6모 개인적인 총평 & 감상 - 기출조각
안녕하세요. 이번 시간에는 엊그제 있었던 6모에 대한 개인적인 총평과 문제별 감상을 이야기하려고 합니다.
일단 6월 모의고사를 치시느라 고생 많으셨습니다.
평가원 모의고사는 매우 중요하다고 하는 만큼 이번 시험을 통해서 본인 실력을 확인해보고 본인의 문제점을 분석해서 다음 시험에서 개선하는 것을 목표로 잘 활용하시면 좋겠습니다.
또한, 평가원 모의고사를 통해서 올해 평가원의 문제 출제 방향을 확인할 수 있기 때문에 두고두고 복습하시면서 평가원 코드에 잘 맞춰주시면 되겠습니다.
[수학 총평]
6모 수학의 경우 제가 느끼기엔 꽤 어려웠습니다. 12번, 15번, 21번, 22번에서 계산량도 많았고, 14번, 15번 등 독특한 문제도 있어 재밌는 시험이었습니다. 다만 평가원 답게 무지성 난이도 높이기가 아닌 적절히 다양한 방법을 조합해서 난도를 높인 것 같아 공부할 가치가 있는 것 같습니다. 3월의 경우 너무 익숙하게 출제되었고, 5월은 너무 새롭게 출제되어서 혼란이 많았을 것 같은데, 6월은 3월과 5월의 중간을 잘 자리 잡은 것 같은 시험이었습니다.6모는 선택과목이 전 범위가 출제 되지 않았기 때문에 우리가 공부한 것의 100%라고 하기 애매하기도 합니다. 그러니 어려웠다고 점수에 연연하지 말고 주어진 범위에서 나의 부족한 부분을 잘 찾아보시길 바랍니다.
[문제별 감상]
문제별 감상의 경우 확통, 미적만 풀어보았기 때문에 기하는 부득이하게 내용이 없습니다. 이점 양해 부탁드립니다.
[공통 12번]
문제 자체는 쉬우나 계산이 많아 진이 조금 빠지는 문제였습니다. 하지만 이정도의 계산량은 감당할 수 있어야 합니다.
[공통 15번]
(나) 조건을 어떻게 해석할지가 관건이었던 문제입니다. 적분의 성질을 잘 파악해서 접근했어야 했고 이후엔 주어진 조건들로 g(k+1)의 범위를 구하면 되는 문제였습니다.
[공통 20번]
저의 경우 최대, 최소가 되는 경우를 추적해서 답을 찾았지만 문제에서 a,b가 5이하의 자연수로 주어지므로 a, b값을 고정하여 일일이 찾아도 되는 문제였습니다. 오히려 이 문제는 일일이 찾는 것이 더 정확한 풀이입니다.
[공통 21번]
자주 나오는 유형으로 그래프 개형을 파악하고 이에 맞는 수식을 세우는 문제입니다. 이런 문제에서는 특히 4차함수일 때, 변수와 계산이 복잡해지는 것을 주의하여 최대한 간결한 식을 세우려고 노력해야 합니다.
[공통 22번]
보통 15번이 수열의 귀납적 정의가 나왔었는데 이번엔 22번으로 출제되었습니다. 이 문제는 귀납적 정의 중에서도 좀 어려운 편에 속했던 것 같은데 마찬가지로 나열을 통해서 값을 추적해 나가면 됩니다. 귀납적 정의 문제를 풀 때는 규칙을 찾을지, 나열할지 판단하고 나열을 택했으면 a1부터 출발할지, a15처럼 뒤에서 역추적할지 또 판단을 해야 합니다. 어떻게 판단하는지에 따라 계산량이 달라지기 때문에 주의하셔야 합니다.
[확통 28번]
조건부 확률 문제로 동전 배치가 조건을 만족시키는 케이스를 잘 구분한 후 이에 맞춰 식을 잘 세워주시면 됩니다. 이런 문제는 케이스를 꼼꼼하게 구분하는 것이 핵심이기 때문에 놓치는 케이스가 없도록 주의하면 되겠습니다.
[미적 27번]
저도 처음에 굉장히 헤맸던 문제로, AC:AB를 닮음을 이용해 높이의 비로 바꿔서 계산하는 것이 핵심입니다. AC,AB로 문제를 풀려고 하면 값이 굉장히 더러워지고 또 좌표평면에 빗변으로 존재하기 때문에 다른 값들을 활용해야겠다고 생각할 수 있어야 합니다. 3점 문제치고 굉장히 어려웠던 문제라고 할 수 있지만 풀이에 접근한 이후 계산이 쉬워 3점으로 분류된 것 같습니다.
[미적 28번]
그래프의 특이점을 파악한 후 구해야 하는 값을 계산해야 하는 문제였는데 g'의 특성상 생각할 것이 조금 있었습니다. g(x)를 f(x)와의 역함수 관계로 생각하고 문제를 풀고, g(x)의 조건에 맞게 g'(f(a+2))와 g'(f(a+b))를 구분해서 구했어야 하는 문제입니다.
[미적 29번]
그래프의 평행이동을 이용한 문제로 조건에 맞는 모양을 만들고 식을 잘 대입하면 됩니다.
[미적 30번]
tan함수의 덧셈정리, 극한의 성질을 잘 활용했어야 하는 문제로, 특히 힘들만 했던 것은 an+1-an이 파이로 수렴하는 것을 찾는 것입니다. 삼각함수에서 수열의 극한이 나오면 주기성을 이용할 확률이 높으니 이를 잘 유의해 주시면 되겠습니다.
모의고사 총평 및 감상은 기출조각에도 올라가 있으니 참고해 주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
쉬운직업? 거지 백수아니면 없다 모든 직업은 자기나름의 고충이 있다 정치인만해도...
-
그냥 날먹하고싶다
-
님들 그거 앎? 0
롯데리아 지파이 하바네로 재출시함
-
사정이 어려운 것 같아서 한두 번 늦게받았더니 과외비 76만원 들고...
-
경희대크라운관에서ㅎㅎ 음악은너무좋아요
-
우린 떨어질 것을 알면서도 더 높은 곳으로만 날았지<-이거 너무 좋아보이지 않나요?
-
올해 1학기때 저렇게하면서 힐링시간 개념으로 국어 공부했는데, 애초에 저건 공부도...
-
아도 내한 기념 3
노래듣기
-
히히
-
단순히 분탕치는 게 아니라 저게 현실인데? 나 사람 살리는 의사 되겠다, 나 소아과...
-
내가 공대나 대학원생까지 끌어들여서 “의대생만 불행해 빼액” 한 적은 없는데,...
-
가능성은 작다지만
-
그냥 끝까지 다 볼껄... 줸장
-
자취하기가 진짜 ㅈ같은 저주받은 위치임ㅋㅋㅋㅋㅋ 옆동네 아주대는 광교에 있어서 좀...
-
입시판을 뜨라는 계시
-
92 92 1 96 99 이렇게 나오면 어디즈음 간다고 보시나요
-
유대종 쌤 숏츠 다 봤는데 재밌어보였음.
-
이제 올해 1/10 남았어요. 36일 2시간 뒤에 새해...
-
고정외를 내놓아라 추추추추추합이라도...
-
옵치할래 5
?
-
무한 엔수 박으시나요?
-
늦게 개강하시네ㅠ
-
6월 영어 원점수 85 9월 영어 원점수 85 수능 영어 원점수 85(듣기 -3)...
-
2026수능을 대비하며 한완수를 하려고 마음먹었습니다 수1 수2 파트 1 2를 꼭...
-
본능적으로 강자에게 복종하는거지 드루이드전형으로 건수의 보내줘
-
뱃지 얻는법 좀 0
대학 빼고 다른 뱃지는 어케 얻음?
-
엘리베이터 타다가 틈에 빠질뻔;
-
맞팔하실분 3
아님 이미 팔로우중인데 내가 팔로우를 안했다 하는 분들도 ㄱㄱ
-
이렇게 다녀올까 8
-
들을려고 하는데 어렵나요?
-
ㄹㅇ 제가 그랬거든요 수능 날 이렇게 뒤통수를 쳐맞을 줄은... 단어 좀 꾸준히 외울 걸
-
귀엽네 ㅋㅋ 14
확 그냥 마 잡아무뿔라 마!
-
공감도 지능이다 2
이 말이 요즘 많이 와닿는다
-
국어만 고정 1이어도 삼수까지는 머리 박아도 된다고 생각함 그만큼 다른 과목에 비해...
-
옆사람도 계속 손 부채질하고 옷 잡고 펄럭거리고 있음
-
혹시 모르니까 원광대랑 전북대는 다시 팔 걸어놓음 내일 면접이네 하
-
면접 전날에 서울 올라가서 면접학원 들르려고요
-
이제 슬슬 할 때가 되었죠 잡담 태그 잘 다는 착한 오르비언이 좋습니다 저도 잡담...
-
썸네일 도긩쌤 뒤에 불꽃 있으면 그 편은 꿀잼 예약임
-
제가 다른 과목은 인강을 들었어도 수학은 딱히 인강을 들어본 적이 없고 동네...
-
ㄱㄱ
-
나이도 먹었는데 우와 대단하네요 이익을 위해서라면 뭐라도 해보겠다는 건가.. 근데...
-
좋아하지 않는데 사귀면 11
그 사람에게 미안하지않남........ 어차피 결혼은 아니니 알빠노 마인드임?
-
편입 티오 늘었다고 편입판 작년부터 수험생 대거 유입됐는데 저거 어케 뚫음..?...
-
《사랑과 거짓말》 국가에서 만 16세가되는날 결혼상대를 정해줌
-
예과생 + 거의 매일 시간 꽉채워서 과외 + 매우 높은 수능 성적 아니면 생활비 다...
-
추천 좀요
-
텔그나 진학사에 설대식 변환점수 내신반영된거?? 텔그는 된거같던데
-
지금까지 평가원 혹은 수능 성적 훑고 가보세요
첫번째 댓글의 주인공이 되어보세요.