[칼럼]논술에서도 쓸일 없는 테일러 급수 증명법 (ver.고등학생)
첫 글 쓴지 얼마 안되서 두번째 글을 써보네요... 그리고 이륙 지원해주신 분들 모두 감사합니다!
제목대로 테일러 급수는 사실 논술에서도 써먹을 기회 자체를 거의 주지 않습니다... 하지만 난 극한 문제를 풀 때 테일러 급수 매번 쓰면서 너무 찝찝했다! 하시는 분들은 한번쯤 읽어 보시면 좋을 것 같습니다.
테일러 급수란 초월함수를 다항함수의 합으로 나타내는 방법입니다. 예를 들자면
과 같은 식의 방정식입니다. 이를 전개하면
과 같은 모양이죠. 여기서 우리가 주로 쓰는 부분은 이차항 이상의 부분을 싹 다 잘라내고
로 근사한 부분입니다. x가 0에 가까워질수록 1차항보단 2차항 이상의 부분의 오차가 매우매우매우 작아지기 때문에 이렇게 근사할 수 있는 것입니다.
그럼 지금부터 테일러 급수의 증명을 간단하게 적어 볼게요.
급수로 구하고자 하는 함수를 f라 둘게요. 고등학교 과정에서 배우는 모든 초월함수는 무한히 미분 가능하니 f도 무한히 미분 가능하다고 두죠. 그러면 미적분의 기본정리에 의해
가 성립합니다.
위 식을 부분적분하는데 u=f'(t), v'=1로 두고 적분상수 C=-x로 두면 다음과 같은 전개가 가능해집니다.
v'=1이면 v를 적분하면 t+C가 나오죠. 여기서 적분할 인자는 t이기 때문에 적분상수를 x로 둘 수 있게 됩니다.
자. 이번엔 오른쪽의 (t-x)f''(t)를 다시 부분적분해 보겠습니다.
여기서 f 위의 괄호 안의 숫자는 f를 미분한 횟수를 표현하는 방법 중 하나입니다. '(dot)을 많이 찍다 보면 갯수 세기가 불편하잖아요?
한번 더 전개하면
이를 계속 반복하다 보면 이러한 규칙이 생깁니다.
이렇게 다 더하면
라는 식이 나옵니다.
함수 f는 무한히 미분이 가능한 함수라 가정했고 대부분의 초월함수가 실제로 그 조건을 만족하므로 n은 무한히 커질 수 있겠죠?
이때 어지간한 초월함수라면 n!의 증가량이 분자 부분((t-x)^n f^(n)(t))의 증가량보다 아득히 크기 때문에 마지막 적분 기호는 n이 무한대로 발산한다면 0으로 수렴합니다.
(이 부분은 대학 가서 적분의 평균값 정리를 배워야 자세히 설명이 가능한데... 일단은 이렇게 대충 짚고 넘어갑시다)
따라서 f(x)는 다음과 같이 새롭게 정의할 수 있습니다.
이것이 그 탈 많은 테일러 급수의 유도 과정입니다.
그럼 이제 실제로 자주 쓰는 초월함수 몇 개를 넣어서 한번 계산해 보죠.
먼저 f(x)=e^x입니다.
f'(x)=e^x, f''(x)=e^x, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
이번엔 로그함수 f(x) = ln(1+x)입니다.
f'(x) = 1/(1+x), f''(x) = - 1/(1+x)^2, f'''(x) = 2/(1+x)^3, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
다음은 사인함수, 코사인함수를 해 볼까요?
이번에도 a=0을 대입하고 미분해서 계산해 보면
나머지 삼각함수들은 사인, 코사인처럼 직접 유도되는 것이 아니라 다른 방법으로 유도합니다. 그래서 그 과정 설명은 못 해드리고... 가장 자주 쓰이는 탄젠트의 식만 짧게 보여드리겠습니다.
네... 이 친구의 계수는 얼핏 보면 불규칙해 보입니다. 이는 나중에 베르누이 수열이라는 걸 배운 뒤에 알아보시는 걸로...
다른 초월함수들은 고등학교 과정에선 거의 안 배우죠? 그러니 초월함수 탐색은 여기까지 하겠습니다. 수식 넣기 힘들어요
마지막으로 테일러 급수는 대체 어디까지 근사해서 써야 하느냐! 에 관한 내용을 조금이나마 적겠습니다.
대부분의 극한 문제에서는 분모 분자가 같은 차수가 되도록 문제를 만듭니다. 이러한 경우에는 보통 1차항(코사인의 경우는 2차항)까지만 근사하면 답이 나옵니다.
하지만 간혹가다 분자에는 사인 1개 x 1개나 탄젠트 1개 x 1개 줘 놓고는 분모에선 3차항을 준다던가... 하는 경우가 있습니다.
뭐 이런식으로 말이죠. 이때는 분모와 차수가 같아지는 차수까지 근사를 해 주셔야 합니다. 가령 위의 식에서는 사인을 3차까지 근사해서 답은 1/6이 나옵니다.
여기까지 테일러 급수의 증명과 활용시 주의점에 대해 부족하게나마 적어 봤습니다. 이걸 보고 수학에 흥미가 생기신다면 좋겠네요... 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제곧내 아는사람 제발 댓글좀 써줘요 ㅠㅠ
-
과탐만 잘봤어도 ㅎ
-
메디컬은 가야되서 과탐은 해야되는데 진짜 뭐하죠 물리는 아예안해서 째끼고 화1...
-
언미물지 90 96 3 47 50
-
유흥즐기는남친vs 12
우흥거리는남친
-
실검 2위 다다 1
그 공대여신 유튜버 이번 수능 어케 되셨을까.. 수의대 가셨으면 좋겠네
-
ㅇㅈ 13
그것은 얼죽아였구요~
-
이땐 참 어렷구나
-
ㄹㅇ임?
-
인하 아주 과기 1
인하 문과에서 반수했고 저 셋 중에 한 곳을 간다면 어디로 가야될까요.. 공대 포함...
-
ㅇㅈ 8
어딘지 맞추긴 쉬울거에요 수능 사흘전 어디선가 찍은 사진
-
할 수 있는 활동은 다 해야 하고 학급임원에 발표에 쌤 이거 생기부써주실수있나요에...
-
ㅇㅈ 2
.
-
에반데 진짜 사문 정법 해야하나
-
실채뜨면 4
진짜 떨어짐?? 텔그 20프로 진학사 2칸씩 막 떨어지나,, 생각하니까 벌써 시무룩하네
-
아까처음담배펴봤는데 18
아직도폐가시린느낌이야...
-
무조건 예습하고 가세요 무조건 전 적응못했다가 겨우 옮김..
-
아닌가 사탐고르고 국수 펌핑시켜서 한약수 노려볼만하지않나
-
샤샤샤 0
랍이형이랑한년두고나는기차놀이해~~
-
경영이 목표인데 그건 어려울거같고 경제도 잘 모르겠고 사회학과가서 복전이나 전과하려는데 가능?
-
친구들은 운동하지말라고 했는데
-
일본어 잘 아는 편은 아니긴 한데 솔직히 개인적으로 한국노래 보다 좋다고 생각함
-
현역 때 정시 시작하면 삼수로 대학 간다
-
말 그대로 타로점 봐드려요. 가벼운 주제는 보고싶은 주제+1~78 중 숫자 3개...
-
기말이 12.5에 끝납니다. 12.10쯤부터해서 3월전까지 정시 베이스깔 생각입니다...
-
나좀뽑아줘 7
제발
-
오늘을 즐겨!!
-
요즘애들은용기가업어
-
ㅇㅈ 12
은 오늘자 서울 어딘가
-
ㅇㅈ 1
-
69수 성적변화 15
6: 98 100 3 95 98 9: 84 95 1 93 99 11: 92 100...
-
질문 받습니다 6
뭐든 가리지 않고 답변해드립니다
-
올해목표겸계획 3
피파 슈챔찍기(현재 최고기록 13x등) 책 100권읽기(현재까지 43권 읽음) 매일...
-
나도 무물 24
-
솔직히 힘듬 0
압박감 때문에 살 ㅈㄴ 빠지고 건강도 안 좋아짐 공부? 지금 좀 노답이긴 한데 중고...
-
지구 3등급 나왔는데 이번 겨방 시즌에 고3이들처럼 개념 다시하는게 맞겠죠?
-
무물할까요.. 16
3명 정도만 왓으면 좋겟다
-
완자같은걸로 개념때는건 불가능한가
-
가능할려나 군대 들가기전에 공부해둬야되나..
-
재수는 반수 포함하면 대치동 애들 70~80%는 하는것 같은데 삼수는 ㄹㅇ 10%정도인듯
-
저도 무물보 10
수험생일 때는 무물보 글 보이면 할게 얼마나 없길래 이런걸 올리나부터 생각했는데...
-
ㅇㅈ 11
-
ㅇㅈ 3
그런건 없다 게이야 ㅋㅋ
-
예비고3 정시 작년에 대종쌤 step0,1 체화서까지 다 풀었는데 올해는 승리쌤...
-
한 3개월 힘든일하면서 바짝벌고 그이후 8개월정도공부만하는게낫나요 아님 바로...
-
핵펑크는 2,3급간이겠지요?
-
원래 화미물1지1이었는게 화확지1 사문 으로 바꿀겁니다 3월 입대인데 그 전에...
-
올해 성적변화.. 12
전역하고 마지막 수능 등급/백분위 6월 22311 89/92/99/99 9월...
테일러씨는 참 똑똑하구나
한무 부분적분으로 테일러급수 느낌있게 증명하기 ㄷㄷ
멋있네요
전 개인적으론 이것보단 미분을 이용한 증명이 더 멋진데... 엡실론 델타를 여기서 설명할 수는 없으니 ㅠ
이것도 올려주신다면 재밌게 읽어보겠습니다 ㅎㅎ,,
이건 차마 설명을 못하겠네요... 너무 풀어쓰기가 힘들어유...
예전에 저걸 통해서 오일러 등식 도출할때 참 수학 재미있다고 생각했었는데...
좋은글 감사합니다