미분계수를어떻게이해해야되죵?
게시글 주소: https://image.orbi.kr/0001747449
곡선이있는데, 우선 곡선의 전체적인틀을파악하기위해 곡선위의두점을잡아서
기울기로써 나타낸 평균변화율이라는게있는데, 그걸로는 곡선의디테일한부분을알수없기에
점점 두점사이의거리르좁혀봅니다 그래서탄생한게미분계수.
a점은 고정으로잡고 x점을 점점 극한을보내서 a로보내는건데
미분계수라는건 0/0 꼴이잖아요.
그래서 약간 뭔가 감이안잡혀요
a와 x점의 기울기 에서 x점을 a점쪽으로보내는건데
극한이란게 a점으로한없이보내는거지 a점이라는건아니잖아요.하지만
한없이보내면 결국 최종목적지는 a점밖에될수없기때문에 극한값은 a가되는데
자꾸,, x가 a로가면 0/0꼴에서 따로계산하면0/0이지만 약분이되어서 값이나오는건데
자구 x가 a로가면 f(x)-f(a) /x-a 가 f(a)-f(a)/a-a 이렇게된다고느껴지는데;
어떻게해야되죵?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
조정호샘 커리 0
조졍호샘 여름전까지 혹시 계속 빈칸순서삽입만 계속수업에 다루시나요? 다른샘은...
-
숭실vs세종 0
숭실 의생명시스템 vs 세종 지능정보융합 입결은 숭실이 높은데 취업이나 다 고려해서
-
ㅇㅂㄱ 0
죽겠다 밥 늦게먹기 + 커피 + 새르비 대환장 콜라보
-
브ㄹㄹ라 1
에이사
-
웬만한 일식집 부럽지 않은 조식이에요 :) 오늘은 후쿠오카로 넘어갑니당 오늘의 프사 1)
-
현역 사탐런 1
고2 9모가 23232 나왔습니다 생지이고요 언매 미적할 예정입니다 작년에 내신으로...
-
일단 개찐따인건 사실이라서 ㅈㄴ 긁혔고 여기서부터는 변명임 인터넷에서 내가 하는...
-
9시까지 도착해야하는데 택시는 기사가 길을 몰라서 나한테 물어보고, 한동네임...
-
안녕하세요 황성찬입니다. 오늘은 “논술은 어떤 학생이 준비하는 것이 좋을까?”를...
-
4일천하 가자
-
얼마나좋을까
-
경기도 사는데 미용실 이곳저곳 다 다녀봤지만 맘에 드는 데가 서울밖에 없어서 계속...
-
재수종합반을 비교해드립니다
-
[속보] 작년 경상흑자 990억달러, 3배로↑…12월 124억달러 역대 최대 1
[4일 오후 부산항 신감만부두와 감만부두, 신선대부두에 수출입 화물이 쌓여있다....
-
신원식, 美국가안보보좌관과 통화…한미관계·北문제 논의 1
신원식 국가안보실장이 5일 마이클 월츠 미국 국가안보보좌관과 통화를 가졌다. 트럼프...
-
왜인지 모르겠는데 2012학년도 수능 가나형의 일부 문제들 쉼표가 파란색으로...
-
전한길, 내란선동으로 고발당해…'尹 국민변호인단'도 가입(종합) 1
부산역광장서 "국민이 헌재 휩쓸 것"…논란되자 "국민 의지 폭풍처럼 전한단 뜻"...
-
얼버기 3
ㅇ
-
문과는 강대라는 말도 있고 문과 또한 닥시대라는 말도 있고. 문과인데 강대...
-
근데 합리화를 한다는 사실이 기분나빠 그래서 합리화를 합리화해
-
ㅈㄱㄴ
-
ㅅㅂ 잠안와서 밤샌거 실화냐? 일단 갈준비하고 나오긴했는데 스카에서 쳐 잘것같은데...
-
서울대 가고싶다 0
하나만 더 맞았으면
-
홍익대 합격생을 위한 노크선배 꿀팁 [홍대25][교내외프린트꿀팁] 0
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
8시부터 7기까지 잠 근데 딱히 개운하지는 않네 중간에 2분 정도 깨서 그런가
-
슬래쉬 기준으로 앞의 점수는 '예'로 답해서 맞는 것의 개수이고 뒤의 점수는...
-
안타까운 학생의 사연이 있어서 대신 올립니다.. 10분정도만 투자해주실 분...
-
불합격이라고만 뜸? 본인이 예비 몇번인지 알 수 있는 방법이 아예 없나
-
오랜만에 버피해서 허리가 놀람... 금방 괜찮아져야 하는데
-
눈 ㅈㄴ 와 0
펑펑
-
공부시작 0
-
220621 풀고 벽을 느낀나 기본개념부터 차근차근 밟아보자
-
Boom!흥이 레어에용
-
서버가 터졌었구나 지금은 아닌가...?
-
생각해보니깐 괜찮아보이는데
-
천재의 삶 1
은 계란
-
얼버기 0
(아님)
-
5월 공군 접수 완료 12
부디 맞는 선택이길
-
승리햇다 1
암 빠킹 위나
-
공개특강 미적분1 유튭에 알고리즘 떠서 들어봤는데 3x변, 비율관계는 개정전에도...
-
일찍 일어나니까 0
빨리 국어가 하고 싶음
-
경제 수특 나오는 날~~
-
깼다 7
ㅇ
-
나 떨고 있니
-
긴급 속보 3
면도안하고마스크쓰기로함
-
진짜 이건 전설이다...
3 3.1 3.14 3.141 3.1415 3.14159 3.141592 .....
이와 같은 수열을 생각해 보세요. 아마도, 원주율 pi로 수렴하겠죠? 그렇지만, 어떤 항도 pi가 되지는 못하지요. 각 항이 모두 유한소수이니까요.
함수의 극한에서도, 이와 비슷하다고 생각하면 됩니다.
이렇게 생각해보세요. 이 경우 x를 a에 가깝게 한다는 것을 조금 다른 식으로 표현하면, (a, f(a))라는 점 근처로 점점 우리의 시각을 확대해나가는 것을 뜻합니다.
그런 의미에서 lim_{x→a} (f(x) - f(a))/(x - a) 를 보겠다는 것은, 우리가 (a, f(a)) 라는 점 주변에서 함수의 그래프를 점점 확대해나가는 것을 뜻하며, 결국 이 극한적인 상황에서 우리는 (좋은 함수의 그래프라면) 곡선이 점점 직선으로 펴지는 기적을 맛보게 될 것입니다.
그리고 이 기적의 증거물(?)인 직선의 기울기가 바로 미분계수가 됩니다.
음, 설명이 조금 안 와닿는다면... 기하학적인 색채를 좀 걷어내고 말해볼까요?
0/0 꼴이라는 것은 사실 눈속임입니다. 예를 들어서 3(x-a)/(x-a) 에서 x→a 를 취한다고 합시다. 그러면 분명 이 식은 0/0 꼴이지만, 사실 그 0이라는 것은 분모와 분자에 x-a 가 곱해져서 생긴 허상에 불과합니다.
중요한 것은 그 두 값의 비이지요.
마찬가지로 (x^2 - a^2)/(x - a) 에서도 분모와 분자가 모두 0으로 가서 뭔가 말이 안 되는 상황이 벌어진다고 여길 수도 있겠지만, 사실 분모와 분자에서 0을 주는 항인 x - a 는 여전히 허깨비에 불과하며, 이들은 이미 잘 약분이 되어서 (x^2 - a^2)/(x - a) = x + a 라는 결과를 줍니다.
비유적으로 표현하자면... 겉모습에 속지 마세요 =ㅁ= 원래 어떤 양이 있는데 단지 그것이 분모분자에 0으로 사라지는 양인 x-a 를 추가로 달고 있다고 생각하시면 좀 더 마음이 편할 겁니다.