## 번호별 기출문제집 15번(수1)

## 수학 영역



수험 번호 $\square$

○ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
$\bigcirc$ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.
Fly by midnight-Borrow Your Time
○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
$\bigcirc$ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.

○ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

○ 15번
1~20쪽

양수 $a$ 와 0 이 아닌 실수 $d$ 에 대하여 첫째항이 모두 $a$ 이고, 공차가 각각 $d,-2 d$ 인 두 등차수열 $\left\{a_{n}\right\},\left\{b_{n}\right\}$ 이 다음 조건을 만족시킨다.
(가) $\left|a_{1}\right|=\left|b_{7}\right|$
(나) $S_{n}=\sum_{k=1}^{n}\left(\left|a_{k}\right|-\left|b_{k}\right|\right)$ 라 할 때, 모든 자연수 $n$ 에 대하여 $S_{n} \leq 108$ 이고, $S_{p}=108$ 인 자연수 $p$ 가 존재한다.
$S_{n} \geq 0$ 을 만족시키는 자연수 $n$ 의 최댓값을 $m$ 이라 할 때, $a_{m}$ 의 값은?

## - MEMO

## - 쓰인 개념 정리

모든 항이 자연수인 수열 $\left\{a_{n}\right\}$ 이 모든 자연수 $n$ 에 대하여

$$
a_{n+2}= \begin{cases}a_{n+1}+a_{n} & \left(a_{n+1}+a_{n} \text { 이 홀수인 경우 }\right) \\ \frac{1}{2}\left(a_{n+1}+a_{n}\right) & \left(a_{n+1}+a_{n} \text { 이 짝수인 경우 }\right)\end{cases}
$$

를 만족시킨다. $a_{1}=1$ 일 때, $a_{8}=34$ 가 되도록 하는 모든 $a_{2}$ 의 값의 합은?

## - MEMO

## - 쓰인 개념 정리

수열 $\left\{a_{n}\right\}$ 이 다음 조건을 만족시킨다.
(가) 모든 자연수 $k$ 에 대하여 $a_{4 k}=r^{k}$ 이다.
(단, $r$ 은 $0<|r|<1$ 인 상수이다.)
(나) $a_{1}<0$ 이고, 모든 자연수 $n$ 에 대하여

$$
a_{n+1}=\left\{\begin{array}{cc}
a_{n}+3 & \left(\left|a_{n}\right|<5\right) \\
-\frac{1}{2} a_{n} & \left(\left|a_{n}\right| \geq 5\right)
\end{array}\right. \text { 이다. }
$$

$\left|a_{m}\right| \geq 5$ 를 만족시키는 100 이하의 자연수 $m$ 의 개수를 $p$ 라 할 때, $p+a_{1}$ 의 값은?

## - MEMO

## - 쓰인 개념 정리

공차가 0이 아닌 등차수열 $\left\{a_{n}\right\}$ 이 있다. 수열 $\left\{b_{n}\right\}$ 은

$$
b_{1}=a_{1}
$$

180629
이고, 2 이상의 자연수 $n$ 에 대하여

$$
b_{n}= \begin{cases}b_{n-1}+a_{n} & (n \text { 이 } 3 \text { 의 배수가 아닌경우 }) \\ b_{n-1}-a_{n} & (n \text { 이 } 3 \text { 의 배수인 경우 })\end{cases}
$$

이다. $b_{10}=a_{10}$ 일 때, $\frac{b_{8}}{b_{10}}=\frac{q}{p}$ 이다. $p+q$ 의 값을 구하시오.
(단, $p$ 와 $q$ 는 서로소인 자연수이다.)

## - MEMO

## - 쓰인 개념 정리

05
240615

자연수 $k$ 에 대하여 다음 조건을 만족시키는 수열 $\left\{a_{n}\right\}$ 이 있다.
$a_{1}=k$ 이고, 모든 자연수 $n$ 에 대하여

$$
a_{n+1}= \begin{cases}a_{n}+2 n-k & \left(a_{n} \leq 0\right) \\ a_{n}-2 n-k & \left(a_{n}>0\right)\end{cases}
$$

이다.
$a_{3} \times a_{4} \times a_{5} \times a_{6}<0$ 이 되도록 하는 모든 $k$ 의 값의 합은?

## - MEMO

## - 쓰인 개념 정리

수열 $\left\{a_{n}\right\}$ 은 $0<a_{1}<1$ 이고, 모든 자연수 $n$ 에 대하여 다음 조건을 만족시킨다.
(가) $a_{2 n}=a_{2} \times a_{n}+1$
(나) $a_{2 n+1}=a_{2} \times a_{n}-2$
$a_{8}-a_{15}=63$ 일 때, $\frac{a_{8}}{a_{1}}$ 의 값은?

## - MEMO

## - 쓰인 개념 정리

모든 항이 자연수이고 다음 조건을 만족시키는 모든 수열 $\left\{a_{n}\right\}$ 에 대하여 $a_{9}$ 의 최댓값과 최솟값을 각각 $M, m$ 이라 할 때, $M+m$ 의 값은?
(가) $a_{7}=40$
(나) 모든 자연수 $n$ 에 대하여
$a_{n+2}= \begin{cases}a_{n+1}+a_{n} & \left(a_{n+1} \text { 이 } 3 \text { 의 배수가 아닌 경우 }\right) \\ \frac{1}{3} a_{n+1} & \left(a_{n+1} \text { 이 } 3 \text { 의 배수인 경우 }\right)\end{cases}$
이다.

## - MEMO

## - 쓰인 개념 정리

다음 조건을 만족시키는 모든 수열 $\left\{a_{n}\right\}$ 에 대하여 $\sum_{k=1}^{100} a_{k}$ 의 최댓값과 최솟값을 각각 $M, m$ 이라 할 때, $M-m$ 의 값은?
(가) $a_{5}=5$
22예비15
(나) 모든 자연수 $n$ 에 대하여

$$
a_{n+1}= \begin{cases}a_{n}-6 & \left(a_{n} \geq 0\right) \\ -2 a_{n}+3 & \left(a_{n}<0\right)\end{cases}
$$

이다.

## - MEMO

## - 쓰인 개념 정리

수열 $\left\{a_{n}\right\}$ 은 $\left|a_{1}\right| \leq 1$ 이고, 모든 자연수 $n$ 에 대하여

$$
a_{n+1}=\left\{\begin{array}{cl}
-2 a_{n}-2 & \left(-1 \leq a_{n} \leftarrow \frac{1}{2}\right) \\
2 a_{n} & \left(-\frac{1}{2} \leq a_{n} \leq \frac{1}{2}\right) \\
-2 a_{n}+2 & \left(\frac{1}{2}<a_{n} \leq 1\right)
\end{array}\right.
$$

을 만족시킨다. $a_{5}+a_{6}=0$ 이고 $\sum_{k=1}^{5} a_{k}>0$ 이 되도록 하는 모든 $a_{1}$ 의 값의 합을 $p$ 라 하자. $10 \times p$ 의 값은?

## - MEMO

## - 쓰인 개념 정리

자연수 $k$ 에 대하여 다음 조건을 만족시키는 수열 $\left\{a_{n}\right\}$ 이 있다.
$a_{1}=0$ 이고, 모든 자연수 $n$ 에 대하여

$$
a_{n+1}= \begin{cases}a_{n}+\frac{1}{k+1} & \left(a_{n} \leq 0\right) \\ a_{n}-\frac{1}{k} & \left(a_{n}<0\right)\end{cases}
$$

이다.
$a_{22}=0$ 이 되도록 하는 모든 $k$ 의 값의 합은?

## - MEMO

## - 쓰인 개념 정리

## 번호별 기출문제집 21번(수1)

## 순 8 여



수험 번호 $\square$

○ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.

- 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.


## Polar-Hey, You up?

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
$\bigcirc$ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.

○ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

○ 21번
1~20쪽

함수 $f(x)=|x-k|-4$ ( $k$ 는 실수)와 양의 실수 $a(a \neq 1)$ 에 대하여 함수 $g(x)$ 를

$$
g(x)= \begin{cases}a^{-f(x)} & (f(x)<0) \\ a^{f(x)} & (f(x) \geq 0)\end{cases}
$$

(고2)
이라 하자. 함수 $y=g(x)$ 의 그래프와 직선 $y=16$ 의 교점의 개수가 3 이고 $g(1)=16$ 일 때, 모든 $f(a-2)$ 의 값의 합을 구하시오.

## - MEMO

## - 쓰인 개념 정리

02
230921

그림과 같이 곡선 $y=2^{x}$ 위에 두 점 $\mathrm{P}\left(a, 2^{a}\right), \mathrm{Q}\left(b, 2^{b}\right)$ 이 있다. 직선 PQ 의 기울기를 $m$ 이라 할 때, 점 P 를 지나며 기울기가 $-m$ 인 직선이 $x$ 축, $y$ 축과 만나는 점을 각각 $\mathrm{A}, \mathrm{B}$ 라 하고, 점 Q 를 지나며 기울기가 $-m$ 인 직선이 $x$ 축과 만나는 점을 C 라 하자.

$$
\overline{\mathrm{AB}}=4 \overline{\mathrm{~PB}}, \quad \overline{\mathrm{CQ}}=3 \overline{\mathrm{AB}}
$$

일 때, $90 \times(a+b)$ 의 값을 구하시오. (단, $0<a<b$ )


## - MEMO

## - 쓰인 개념 정리

그림과 같이 $a>1$ 인 실수 $a$ 에 대하여 두 곡선

$$
y=a^{-2 x}-1, y=a^{x}-1
$$

이 있다. 곡선 $y=a^{-2 x}-1$ 과 직선 $y=-\sqrt{3} x$ 가 서로 다른 두 점 O , A 에서 만난다. 점 A 를 지나고 직선 OA 에 수직인 직선이 곡선 $y=a^{x}-1$ 과 제 1 사분면에서 만나는 점을 B 라 하자.
$\overline{\mathrm{OA}}: \overline{\mathrm{OB}}=\sqrt{3}: \sqrt{19}$ 일 때, 선분 AB 의 길이를 구하시오.
(단, O 는 원점이다.)


## - MEMO

## - 쓰인 개념 정리

두 곡선 $y=2^{x}$ 과 $y=-2 x^{2}+2$ 가 만나는 두 점을 $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ 라 하자. $x_{1}<x_{2}$ 이고, 〈보기〉의 각 명제에 대하여 다음 규칙에 따라 $A, B, C$ 의 값을 정할 때, $A+B+C$ 의 값을 구하시오. (단, $A+B+C \neq 0$ )

- 명제 ㄱㅇㅣ 참이면 $A=100$, 거짓이면 $A=0$ 이다.
- 명제 ㄴㅇㅣ 참이면 $B=10$, 거짓이면 $B=0$ 이다.
- 명제 ㄷㅇㅣ 참이면 $C=1$, 거짓이면 $C=0$ 이다.

ㄱ. $x_{2}>\frac{1}{2}$
ㄴ. $y_{2}-y_{1}<x_{2}-x_{1}$
ㄷ. $\frac{\sqrt{2}}{2}<y_{2} y_{1}<1$

## - MEMO

## - 쓰인 개념 정리

$a>1$ 인 실수 $a$ 에 대하여 직선 $y=-x+4$ 가 두 곡선

$$
y=a^{x-1}, y=\log _{a}(x-1)
$$

220921
과 만나는 점을 각각 $\mathrm{A}, \mathrm{B}$ 라 하고, 곡선 $y=a^{x-1}$ 이 $y$ 축과 만나는 점을 C 라 하자. $\overline{\mathrm{AB}}=2 \sqrt{2}$ 일 때, 삼각형 ABC 의 넓이는 $S$ 이다. $50 \times S$ 의 값을 구하시오.


## - MEMO

## - 쓰인 개념 정리

두 양수 $a, k(k \neq 1)$ 에 대하여 함수

$$
f(x)= \begin{cases}2 \log _{k}(x-k+1)+2^{-a} & (x \geq k) \\ 2 \log _{\frac{1}{k}}(-x+k+1)+2^{-a} & (x<k)\end{cases}
$$

가 있다. $f(x)$ 의 역함수를 $g(x)$ 라 할 때, 방정식 $f(x)=g(x)$ 의 해는 $-\frac{3}{4}, t, \frac{5}{4}$ 이다. $30(a+k+t)$ 의 값을 구하시오. (단, $0<t<1$ )

## - MEMO

## - 쓰인 개념 정리

상수 $k$ 에 대하여 다음 조건을 만족시키는 좌표평면의 점 $\mathrm{A}(a, b)$ 가 오직 하나 존재한다.
(가) 점 A 는 곡선 $y=\log _{2}(x+2)+k$ 위의 점이다.
(나) 점 A 를 직선 $y=x$ 에 대하여 대칭이동한 점은 곡선 $y=4^{x+k}+2$ 위에 있다.

## - MEMO

## - 쓰인 개념 정리

두 곡선 $y=2^{-x}$ 과 $y=\left|\log _{2} x\right|$ 가 만나는 두 점을 $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ 라 하자. $x_{1}<x_{2}$ 이고, 〈보기〉의 각 명제에 대하여 다음 규칙에 따라
$A, B, C$ 의 값을 정할 때, $A+B+C$ 의 값을 구하시오.
(단, $A+B+C \neq 0$ )

- 명제 ㄱㅇㅣ 참이면 $A=100$, 거짓이면 $A=0$ 이다.
- 명제 니 참이면 $B=10$, 거짓이면 $B=0$ 이다.
- 명제 ㄷㅇㅣ 참이면 $C=1$, 거짓이면 $C=0$ 이다.

ㄱ. $\frac{1}{2}<x_{1}<\frac{\sqrt{2}}{2}$
ㄴ. $\sqrt[3]{2}<x_{2}<\sqrt{2}$
ㄷ. $y_{1}-y_{2}<\frac{3 \sqrt{2}-2}{6}$

## - MEMO

## - 쓰인 개념 정리

실수 $t$ 에 대하여 두 곡선 $y=t-\log _{2} x$ 와 $y=2^{x-t}$ 이 만나는 점의 $x$ 좌표를 $f(t)$ 라 하자. <보기>의 각 명제에 대하여 다음 규칙에 따라 $A, B, C$ 의 값을 정할 때, $A+B+C$ 의 값을 구하시오. (단, $A+B+C \neq 0$ ) [4점]

- 명제 기 참이면 $A=100$, 거짓이면 $A=0$ 이다.
- 명제 니 참이면 $B=10$, 거짓이면 $B=0$ 이다.
- 명제 ㄷㅇㅣ 참이면 $C=1$, 거짓이면 $C=0$ 이다.

ㄱ. $f(1)=1$ 이고 $f(2)=2$ 이다.
ㄴ. 실수 $t$ 의 값이 증가하면 $f(t)$ 의 값도 증가한다.
ㄷ. 모든 양의 실수 $t$ 에 대하여 $f(t) \geq t$ 이다.

## - MEMO

## - 쓰인 개념 정리

## 10

함수

$$
f(x)=\left|2 a \cos \frac{b}{2} x-(a-2)(b-2)\right|
$$

23사관15
가 다음 조건을 만족시키도록 하는 10 이하의 자연수 $a, b$ 의 모든 순서쌍 $(a, b)$ 의 개수는?
(가) 함수 $f(x)$ 는 주기가 $\pi$ 인 주기함수이다.
(나) $0 \leq x \leq 2 \pi$ 에서 함수 $y=f(x)$ 의 그래프와 직선 $y=2 a-1$ 의 교점의 개수는 4 이다.

## - MEMO

## - 쓰인 개념 정리

## 번호별 기출문제집 22번(수2)

## 수하 영여

## 성명

수험 번호
$\bigcirc$ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
$\bigcirc$ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

## HRVY-Be okay

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
$\bigcirc$ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
$\bigcirc$ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

○ 22번
1~20쪽

두 양수 $a, b(b>3)$ 과 최고차항의 계수가 1 인 이차함수 $f(x)$ 에 대하여 함수

$$
g(x)= \begin{cases}(x+3) f(x) & (x<0) \\ (x+a) f(x-b) & (x \geq 0)\end{cases}
$$

230622
이 실수 전체의 집합에서 연속이고 다음 조건을 만족시킬 때, $g(4)$ 의 값을 구하시오.
$\lim _{x \rightarrow-3} \frac{\sqrt{|g(x)|+\{g(t)\}^{2}}-|g(t)|}{(x+3)^{2}}$ 의 값이 존재하지 않는 실수 $t$ 의 값은 -3 과 6 뿐이다.

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 와 실수 전체의 집합에서 연속인 함수 $g(x)$ 가 다음 조건을 만족시킬 때, $f(4)$ 의 값을 구하시오.
(가) 모든 실수 $x$ 에 대하여

$$
f(x)=f(1)+(x-1) f^{\prime}(g(x)) \text { 이다. }
$$

(나) 함수 $g(x)$ 의 최솟값은 $\frac{5}{2}$ 이다.
(다) $f(0)=-3, f(g(1))=6$

## - MEMO

## - 쓰인 개념 정리

양수 $a$ 에 대하여 최고차항의 계수가 1 인 삼차함수 $f(x)$ 와 실수 전체의 집합에서 정의된 함수 $g(x)$ 가 다음 조건을 만족시킨다.
(가) 모든 실수 $x$ 에 대하여
$|x(x-2)| g(x)=x(x-2)(|f(x)|-a)$
이다.
(나) 함수 $g(x)$ 는 $x=0$ 과 $x=2$ 에서 미분가능하다.
$g(3 a)$ 의 값을 구하시오.

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 에 대하여 함수

$$
g(x)=f(x-3) \times \lim _{h \rightarrow 0+} \frac{|f(x+h)|-|f(x-h)|}{h}
$$

가 다음 조건을 만족시킬 때, $f(5)$ 의 값을 구하시오.
(가) 함수 $g(x)$ 는 실수 전체의 집합에서 연속이다.
(나) 방정식 $g(x)=0$ 은 서로 다른 네 실근 $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ 을 갖고,

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=7 \text { 이다. }
$$

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 와 실수 $t$ 가 다음 조건을 만족시킨다.
등식 $f(a)+1=f^{\prime}(a)(a-t)$ 를 만족시키는 실수 $a$ 의 값이 6 하나뿐이기 위한 필요충분조건은 $-2<t<k$ 이다.
$f(8)$ 의 값을 구하시오. (단, $k$ 는 -2 보다 큰 상수이다.)

## - MEMO

## - 쓰인 개념 정리

삼차함수 $f(x)$ 에 대하여 곡선 $y=f(x)$ 위의 점 $(0,0)$ 에서의 접선의 방정식을 $y=g(x)$ 라 할 때, 함수 $h(x)$ 를

$$
h(x)=|f(x)|+g(x)
$$

220722
라 하자. 함수 $h(x)$ 가 다음 조건을 만족시킨다.
(가) 곡선 $y=h(x)$ 위의 점 $(k, 0)(k \neq 0)$ 에서의 접선의 방정식은 $y=0$ 이다.
(나) 방정식 $h(x)=0$ 의 실근 중에서 가장 큰 값은 12 이다.
$h(3)=-\frac{9}{2}$ 일 때, $k \times\{h(6)-h(11)\}$ 의 값을 구하시오. (단, $k$ 는 상수)

## - MEMO

## - 쓰인 개념 정리

함수

$$
f(x)=x^{3}-3 p x^{2}+q
$$

가 다음 조건을 만족시키도록 하는 25 이하의 두 자연수 $p, q$ 의 모든 순서쌍 $(p, q)$ 의 개수를 구하시오.
(가) 함수 $|f(x)|$ 가 $x=a$ 에서 극대 또는 극소가 되도록 하는 모든 실수 $a$ 의 개수는 5 이다.
(나) 닫힌구간 $[-1,1]$ 에서 함수 $|f(x)|$ 의 최댓값과 닫힌구간 $[-2,2]$ 에서 함수 $|f(x)|$ 의 최댓값은 같다.

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 이고 $x=3$ 에서 극댓값 8 을 갖는 삼차함수 $f(x)$ 가 있다. 실수 $t$ 에 대하여 함수 $g(x)$ 를

$$
g(x)= \begin{cases}f(x) & (x \geq t) \\ -f(x)+2 f(t) & (x<t)\end{cases}
$$

라 할 때, 방정식 $g(x)=0$ 의 서로 다른 실근의 개수를 $h(t)$ 라 하자. 함수 $h(t)$ 가 $t=a$ 에서 불연속인 $a$ 의 값이 두 개일 때, $f(8)$ 의 값을 구하시오.

## - MEMO

## - 쓰인 개념 정리

삼차함수 $f(x)$ 가 다음 조건을 만족시킨다.
(가) 방정식 $f(x)=0$ 의 서로 다른 실근의 개수는 2 이다.
(나) 방정식 $f(x-f(x))=0$ 의 서로 다른 실근의 개수는 3 이다.
220622
$f(1)=4, f^{\prime}(1)=1, f^{\prime}(0)>1$ 일 때, $f(0)=\frac{q}{p}$ 이다. $p+q$ 의 값을
구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.)

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 $\frac{1}{2}$ 인 삼차함수 $f(x)$ 와 실수 $t$ 에 대하여 방정식 $f^{\prime}(x)=0$ 이 닫힌구간 $[t, t+2]$ 에서 갖는 실근의 개수를 $g(t)$ 라 할 때, 함수 $g(t)$ 는 다음 조건을 만족시킨다.

221122
(가) 모든 실수 $a$ 에 대하여 $\lim _{t \rightarrow a+} g(t)+\lim _{t \rightarrow a-} g(t) \leq 2$ 이다.
(나) $g(f(1))=g(f(4))=2, g(f(0))=1$
$f(5)$ 의 값을 구하시오.

## - MEMO

## - 쓰인 개념 정리

## 번호별 기출문제집 30번(미적분)

## 스항여

## 人

수험 번호
$\bigcirc$ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
$\bigcirc$ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.
Ethan Bortnick-deadly ever after

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
○ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
$\bigcirc$ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

30번
1~20쪽
$t>\frac{1}{2} \ln 2$ 인 실수 $t$ 에 대하여 곡선 $y=\ln \left(1+e^{2 x}-e^{-2 t}\right)$ 과 직선 $y=x+t$ 가 만나는 서로 다른 두 점 사이의 거리를 $f(t)$ 라 할 때, $f^{\prime}(\ln 2)=\frac{q}{p} \sqrt{2}$ 이다. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.)

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 $6 \pi$ 인 삼차함수 $f(x)$ 에 대하여 함수 $g(x)=\frac{1}{2+\sin (f(x))}$ 이 $x=\alpha$ 에서 극대 또는 극소이고 $\alpha \geq 0$ 인 모든 $\alpha$ 를 작은 수부터 크기순으로 나열한 것을 $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \cdots$ 라 할 때, $g(x)$ 는 다음 조건을 만족시킨다.
(가) $\alpha_{1}=0$ 이고 $g\left(\alpha_{1}\right)=\frac{2}{5}$ 이다.
(나) $\frac{1}{g\left(\alpha_{5}\right)}=\frac{1}{g\left(\alpha_{2}\right)}+\frac{1}{2}$
$g^{\prime}\left(-\frac{1}{2}\right)=a \pi$ 라 할 때, $a^{2}$ 의 값을 구하시오. (단, $0<f(0)<\frac{\pi}{2}$ )

## - MEMO

## - 쓰인 개념 정리

## 최고차항의 계수가 3 보다 크고 실수 전체의 집합에서 최솟값이 양수인

 이차함수 $f(x)$ 에 대하여 함수 $g(x)$ 가$$
g(x)=e^{x} f(x)
$$

이다. 양수 $k$ 에 대하여 집합 $\{x \mid g(x)=k, x$ 는 실수 $\}$ 의 모든 원소의 합을 $h(k)$ 라 할 때, 양의 실수 전체의 집합에서 정의된 함수 $h(k)$ 는 다음 조건을 만족시킨다.
(가) 함수 $h(k)$ 가 $k=t$ 에서 불연속인 $t$ 의 개수는 1 이다.
(나) $\lim _{k \rightarrow 3 e+} h(k)-\lim _{k \rightarrow 3 e-} h(k)=2$
$g(-6) \times g(2)$ 의 값을 구하시오. (단, $\lim _{x \rightarrow-\infty} x^{2} e^{x}=0$ )

## - MEMO

## - 쓰인 개념 정리

$x=a(a>0)$ 에서 극댓값을 갖는 사차함수 $f(x)$ 에 대하여 함수 $g(x)$ 가

$$
g(x)=\left\{\begin{array}{cc}
\frac{1-\cos \pi x}{f(x)} & (f(x) \neq 0) \\
\frac{7}{128} \pi^{2} & (f(x)=0)
\end{array}\right.
$$

일 때, 함수 $g(x)$ 는 실수 전체의 집합에서 미분가능하고 다음 조건을 만족시킨다.
(가) $g^{\prime}(0) \times g^{\prime}(2 a) \neq 0$
(나) 함수 $g(x)$ 는 $x=a$ 에서 극값을 갖는다.
$g(1)=\frac{2}{7}$ 일 때, $g(-1)=\frac{q}{p}$ 이다. $p+q$ 의 값을 구하시오.
(단, $p$ 와 $q$ 는 서로소인 자연수이다.)

## - MEMO

## - 쓰인 개념 정리

함수 $f(x)=\ln \left(e^{x}+1\right)+2 e^{x}$ 에 대하여 이차함수 $g(x)$ 와 실수 $k$ 는 다음 조건을 만족시킨다.

함수 $h(x)=|g(x)-f(x-k)|$ 는 $x=k$ 에서 최솟값 $g(k)$ 를 갖고,
닫힌 구간 $[k-1, k+1]$ 에서 최댓값 $2 e+\ln \left(\frac{1+e}{\sqrt{2}}\right)$ 를 갖는다.
$g^{\prime}\left(k-\frac{1}{2}\right)$ 의 값을 구하시오. (단, $\frac{5}{2}<e<3$ 이다.)

## - MEMO

## - 쓰인 개념 정리

두 양수 $a, b(b<1)$ 에 대하여 함수 $f(x)$ 를

$$
f(x)= \begin{cases}-x^{2}+a x & (x \leq 0) \\ \frac{\ln (x+b)}{x} & (x>0)\end{cases}
$$

이라 하자. 양수 $m$ 에 대하여 직선 $y=m x$ 와 함수 $y=f(x)$ 의 그래프가 만나는 서로 다른 점의 개수를 $g(m)$ 이라 할 때, 함수 $g(m)$ 은 다음 조건을 만족시킨다.
$\lim _{m \rightarrow \alpha-} g(m)-\lim _{m \rightarrow \alpha+} g(m)=1$ 을 만족시키는 양수 $\alpha$ 가 오직 하나
존재하고, 이 $\alpha$ 에 대하여 점 $(b, f(b))$ 는 직선 $y=\alpha x$ 와 곡선 $y=f(x)$ 의 교점이다.
$a b^{2}=\frac{q}{p}$ 일 때, $p+q$ 의 값을 구하시오.
(단, $p$ 와 $q$ 는 서로소인 자연수이고, $\lim _{x \rightarrow \infty} f(x)=0$ 이다.)

## - MEMO

## - 쓰인 개념 정리

양의 실수 $t$ 에 대하여 곡선 $y=t^{3} \ln (x-t)$ 가 곡선 $y=2 e^{x-a}$ 와 오직 한 점에서 만나도록 하는 실수 $a$ 의 값을 $f(t)$ 라 하자. $\left\{f^{\prime}\left(\frac{1}{3}\right)\right\}^{2}$ 의 값을 구하시오.

## - MEMO

## - 쓰인 개념 정리

다음 조건을 만족시키는 실수 $a, b$ 에 대하여 $a b$ 의 최댓값을 $M$, 최솟값을 $m$ 이라 하자.

모든 실수 $x$ 에 대하여 부등식

$$
-e^{-x+1} \leq a x+b \leq e^{x-2}
$$

이 성립한다.
$|M \times m|=\frac{q}{p}$ 일 때, $p+q$ 의 값을 구하시오.
(단, $p$ 와 $q$ 는 서로소인 자연수이다.)

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 인 사차함수 $f(x)$ 와 구간 $(0, \infty)$ 에서 $g(x) \geq 0$ 인 함수 $g(x)$ 가 다음 조건을 만족시킨다.
(가) $x \leq-3$ 인 모든 실수 $x$ 에 대하여 $f(x) \geq f(-3)$ 이다.
(나) $x>-3$ 인 모든 실수 $x$ 에 대하여

$$
g(x+3)\{f(x)-f(0)\}^{2}=f^{\prime}(x) \text { 이다. }
$$

$\int_{4}^{5} g(x) d x=\frac{q}{p}$ 일 때, $p+q$ 의 값을 구하시오.
(단, $p$ 와 $q$ 는 서로소인 자연수이다.)

## - MEMO

## - 쓰인 개념 정리

실수 $t$ 에 대하여 함수 $f(x)$ 를

$$
f(x)=\left\{\begin{array}{cc}
1-|x-t| & (|x-t| \leq 1) \\
0 & (|x-t|>1)
\end{array}\right.
$$

이라 할 때, 어떤 홀수 $k$ 에 대하여 함수

$$
g(t)=\int_{k}^{k+8} f(x) \cos (\pi x) d x
$$

가 다음 조건을 만족시킨다.
함수 $g(t)$ 가 $t=\alpha$ 에서 극소이고 $g(\alpha)<0$ 인 모든 $\alpha$ 를 작은 수부터 크기순으로 나열한 것을 $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ ( $m$ 은 자연수)라 할 때, $\sum_{i=1}^{m} a_{i}=45$ 이다.

## - MEMO

## - 쓰인 개념 정리

