번호별 기출문제집 21번(수1)

순 8 여

수험 번호 \square

○ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.

- 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

Polar-Hey, You up?

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
\bigcirc 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.

○ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

○ 21번
1~20쪽

함수 $f(x)=|x-k|-4$ (k 는 실수)와 양의 실수 $a(a \neq 1)$ 에 대하여 함수 $g(x)$ 를

$$
g(x)= \begin{cases}a^{-f(x)} & (f(x)<0) \\ a^{f(x)} & (f(x) \geq 0)\end{cases}
$$

(고2)
이라 하자. 함수 $y=g(x)$ 의 그래프와 직선 $y=16$ 의 교점의 개수가 3 이고 $g(1)=16$ 일 때, 모든 $f(a-2)$ 의 값의 합을 구하시오.

- MEMO

- 쓰인 개념 정리

02
230921

그림과 같이 곡선 $y=2^{x}$ 위에 두 점 $\mathrm{P}\left(a, 2^{a}\right), \mathrm{Q}\left(b, 2^{b}\right)$ 이 있다. 직선 PQ 의 기울기를 m 이라 할 때, 점 P 를 지나며 기울기가 $-m$ 인 직선이 x 축, y 축과 만나는 점을 각각 A, B 라 하고, 점 Q 를 지나며 기울기가 $-m$ 인 직선이 x 축과 만나는 점을 C 라 하자.

$$
\overline{\mathrm{AB}}=4 \overline{\mathrm{~PB}}, \quad \overline{\mathrm{CQ}}=3 \overline{\mathrm{AB}}
$$

일 때, $90 \times(a+b)$ 의 값을 구하시오. (단, $0<a<b$)

- MEMO

- 쓰인 개념 정리

그림과 같이 $a>1$ 인 실수 a 에 대하여 두 곡선

$$
y=a^{-2 x}-1, y=a^{x}-1
$$

이 있다. 곡선 $y=a^{-2 x}-1$ 과 직선 $y=-\sqrt{3} x$ 가 서로 다른 두 점 O , A 에서 만난다. 점 A 를 지나고 직선 OA 에 수직인 직선이 곡선 $y=a^{x}-1$ 과 제 1 사분면에서 만나는 점을 B 라 하자.
$\overline{\mathrm{OA}}: \overline{\mathrm{OB}}=\sqrt{3}: \sqrt{19}$ 일 때, 선분 AB 의 길이를 구하시오.
(단, O 는 원점이다.)

- MEMO

- 쓰인 개념 정리

두 곡선 $y=2^{x}$ 과 $y=-2 x^{2}+2$ 가 만나는 두 점을 $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ 라 하자. $x_{1}<x_{2}$ 이고, 〈보기〉의 각 명제에 대하여 다음 규칙에 따라 A, B, C 의 값을 정할 때, $A+B+C$ 의 값을 구하시오. (단, $A+B+C \neq 0$)

- 명제 ㄱㅇㅣ 참이면 $A=100$, 거짓이면 $A=0$ 이다.
- 명제 ㄴㅇㅣ 참이면 $B=10$, 거짓이면 $B=0$ 이다.
- 명제 ㄷㅇㅣ 참이면 $C=1$, 거짓이면 $C=0$ 이다.

ㄱ. $x_{2}>\frac{1}{2}$
ㄴ. $y_{2}-y_{1}<x_{2}-x_{1}$
ㄷ. $\frac{\sqrt{2}}{2}<y_{2} y_{1}<1$

- MEMO

- 쓰인 개념 정리

$a>1$ 인 실수 a 에 대하여 직선 $y=-x+4$ 가 두 곡선

$$
y=a^{x-1}, y=\log _{a}(x-1)
$$

220921
과 만나는 점을 각각 A, B 라 하고, 곡선 $y=a^{x-1}$ 이 y 축과 만나는 점을 C 라 하자. $\overline{\mathrm{AB}}=2 \sqrt{2}$ 일 때, 삼각형 ABC 의 넓이는 S 이다. $50 \times S$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

두 양수 $a, k(k \neq 1)$ 에 대하여 함수

$$
f(x)= \begin{cases}2 \log _{k}(x-k+1)+2^{-a} & (x \geq k) \\ 2 \log _{\frac{1}{k}}(-x+k+1)+2^{-a} & (x<k)\end{cases}
$$

가 있다. $f(x)$ 의 역함수를 $g(x)$ 라 할 때, 방정식 $f(x)=g(x)$ 의 해는 $-\frac{3}{4}, t, \frac{5}{4}$ 이다. $30(a+k+t)$ 의 값을 구하시오. (단, $0<t<1$)

- MEMO

- 쓰인 개념 정리

상수 k 에 대하여 다음 조건을 만족시키는 좌표평면의 점 $A(a, b)$ 가 오직 하나 존재한다.
(가) 점 A 는 곡선 $y=\log _{2}(x+2)+k$ 위의 점이다.
(나) 점 A 를 직선 $y=x$ 에 대하여 대칭이동한 점은 곡선 $y=4^{x+k}+2$ 위에 있다.

- MEMO

- 쓰인 개념 정리

두 곡선 $y=2^{-x}$ 과 $y=\left|\log _{2} x\right|$ 가 만나는 두 점을 $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ 라 하자. $x_{1}<x_{2}$ 이고, 〈보기〉의 각 명제에 대하여 다음 규칙에 따라
A, B, C 의 값을 정할 때, $A+B+C$ 의 값을 구하시오.
(단, $A+B+C \neq 0$)

- 명제 ㄱㅇㅣ 참이면 $A=100$, 거짓이면 $A=0$ 이다.
- 명제 니 참이면 $B=10$, 거짓이면 $B=0$ 이다.
- 명제 ㄷㅇㅣ 참이면 $C=1$, 거짓이면 $C=0$ 이다.

ㄱ. $\frac{1}{2}<x_{1}<\frac{\sqrt{2}}{2}$
ㄴ. $\sqrt[3]{2}<x_{2}<\sqrt{2}$
ㄷ. $y_{1}-y_{2}<\frac{3 \sqrt{2}-2}{6}$

- MEMO

- 쓰인 개념 정리

실수 t 에 대하여 두 곡선 $y=t-\log _{2} x$ 와 $y=2^{x-t}$ 이 만나는 점의 x 좌표를 $f(t)$ 라 하자. <보기>의 각 명제에 대하여 다음 규칙에 따라 A, B, C 의 값을 정할 때, $A+B+C$ 의 값을 구하시오. (단, $A+B+C \neq 0$) [4점]

- 명제 기 참이면 $A=100$, 거짓이면 $A=0$ 이다.
- 명제 니 참이면 $B=10$, 거짓이면 $B=0$ 이다.
- 명제 ㄷㅇㅣ 참이면 $C=1$, 거짓이면 $C=0$ 이다.

ㄱ. $f(1)=1$ 이고 $f(2)=2$ 이다.
ㄴ. 실수 t 의 값이 증가하면 $f(t)$ 의 값도 증가한다.
ㄷ. 모든 양의 실수 t 에 대하여 $f(t) \geq t$ 이다.

- MEMO

- 쓰인 개념 정리

10

함수

$$
f(x)=\left|2 a \cos \frac{b}{2} x-(a-2)(b-2)\right|
$$

23사관15
가 다음 조건을 만족시키도록 하는 10 이하의 자연수 a, b 의 모든 순서쌍 (a, b) 의 개수는?
(가) 함수 $f(x)$ 는 주기가 π 인 주기함수이다.
(나) $0 \leq x \leq 2 \pi$ 에서 함수 $y=f(x)$ 의 그래프와 직선 $y=2 a-1$ 의 교점의 개수는 4 이다.

- MEMO

- 쓰인 개념 정리

