번호별 기출문제집 30번(미적분)

스항여

人

수험 번호
\bigcirc 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
\bigcirc 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.
Ethan Bortnick-deadly ever after

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
○ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
\bigcirc 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

30번
1~20쪽
$t>\frac{1}{2} \ln 2$ 인 실수 t 에 대하여 곡선 $y=\ln \left(1+e^{2 x}-e^{-2 t}\right)$ 과 직선 $y=x+t$ 가 만나는 서로 다른 두 점 사이의 거리를 $f(t)$ 라 할 때, $f^{\prime}(\ln 2)=\frac{q}{p} \sqrt{2}$ 이다. $p+q$ 의 값을 구하시오. (단, p 와 q 는 서로소인 자연수이다.)

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 6π 인 삼차함수 $f(x)$ 에 대하여 함수 $g(x)=\frac{1}{2+\sin (f(x))}$ 이 $x=\alpha$ 에서 극대 또는 극소이고 $\alpha \geq 0$ 인 모든 α 를 작은 수부터 크기순으로 나열한 것을 $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \cdots$ 라 할 때, $g(x)$ 는 다음 조건을 만족시킨다.
(가) $\alpha_{1}=0$ 이고 $g\left(\alpha_{1}\right)=\frac{2}{5}$ 이다.
(나) $\frac{1}{g\left(\alpha_{5}\right)}=\frac{1}{g\left(\alpha_{2}\right)}+\frac{1}{2}$
$g^{\prime}\left(-\frac{1}{2}\right)=a \pi$ 라 할 때, a^{2} 의 값을 구하시오. (단, $0<f(0)<\frac{\pi}{2}$)

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 3 보다 크고 실수 전체의 집합에서 최솟값이 양수인

 이차함수 $f(x)$ 에 대하여 함수 $g(x)$ 가$$
g(x)=e^{x} f(x)
$$

이다. 양수 k 에 대하여 집합 $\{x \mid g(x)=k, x$ 는 실수 $\}$ 의 모든 원소의 합을 $h(k)$ 라 할 때, 양의 실수 전체의 집합에서 정의된 함수 $h(k)$ 는 다음 조건을 만족시킨다.
(가) 함수 $h(k)$ 가 $k=t$ 에서 불연속인 t 의 개수는 1 이다.
(나) $\lim _{k \rightarrow 3 e+} h(k)-\lim _{k \rightarrow 3 e-} h(k)=2$
$g(-6) \times g(2)$ 의 값을 구하시오. (단, $\lim _{x \rightarrow-\infty} x^{2} e^{x}=0$)

- MEMO

- 쓰인 개념 정리

$x=a(a>0)$ 에서 극댓값을 갖는 사차함수 $f(x)$ 에 대하여 함수 $g(x)$ 가

$$
g(x)=\left\{\begin{array}{cc}
\frac{1-\cos \pi x}{f(x)} & (f(x) \neq 0) \\
\frac{7}{128} \pi^{2} & (f(x)=0)
\end{array}\right.
$$

일 때, 함수 $g(x)$ 는 실수 전체의 집합에서 미분가능하고 다음 조건을 만족시킨다.
(가) $g^{\prime}(0) \times g^{\prime}(2 a) \neq 0$
(나) 함수 $g(x)$ 는 $x=a$ 에서 극값을 갖는다.
$g(1)=\frac{2}{7}$ 일 때, $g(-1)=\frac{q}{p}$ 이다. $p+q$ 의 값을 구하시오.
(단, p 와 q 는 서로소인 자연수이다.)

- MEMO

- 쓰인 개념 정리

함수 $f(x)=\ln \left(e^{x}+1\right)+2 e^{x}$ 에 대하여 이차함수 $g(x)$ 와 실수 k 는 다음 조건을 만족시킨다.

함수 $h(x)=|g(x)-f(x-k)|$ 는 $x=k$ 에서 최솟값 $g(k)$ 를 갖고,
닫힌 구간 $[k-1, k+1]$ 에서 최댓값 $2 e+\ln \left(\frac{1+e}{\sqrt{2}}\right)$ 를 갖는다.
$g^{\prime}\left(k-\frac{1}{2}\right)$ 의 값을 구하시오. (단, $\frac{5}{2}<e<3$ 이다.)

- MEMO

- 쓰인 개념 정리

두 양수 $a, b(b<1)$ 에 대하여 함수 $f(x)$ 를

$$
f(x)= \begin{cases}-x^{2}+a x & (x \leq 0) \\ \frac{\ln (x+b)}{x} & (x>0)\end{cases}
$$

이라 하자. 양수 m 에 대하여 직선 $y=m x$ 와 함수 $y=f(x)$ 의 그래프가 만나는 서로 다른 점의 개수를 $g(m)$ 이라 할 때, 함수 $g(m)$ 은 다음 조건을 만족시킨다.
$\lim _{m \rightarrow \alpha-} g(m)-\lim _{m \rightarrow \alpha+} g(m)=1$ 을 만족시키는 양수 α 가 오직 하나
존재하고, 이 α 에 대하여 점 $(b, f(b))$ 는 직선 $y=\alpha x$ 와 곡선 $y=f(x)$ 의 교점이다.
$a b^{2}=\frac{q}{p}$ 일 때, $p+q$ 의 값을 구하시오.
(단, p 와 q 는 서로소인 자연수이고, $\lim _{x \rightarrow \infty} f(x)=0$ 이다.)

- MEMO

- 쓰인 개념 정리

양의 실수 t 에 대하여 곡선 $y=t^{3} \ln (x-t)$ 가 곡선 $y=2 e^{x-a}$ 와 오직 한 점에서 만나도록 하는 실수 a 의 값을 $f(t)$ 라 하자. $\left\{f^{\prime}\left(\frac{1}{3}\right)\right\}^{2}$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

다음 조건을 만족시키는 실수 a, b 에 대하여 $a b$ 의 최댓값을 M, 최솟값을 m 이라 하자.

모든 실수 x 에 대하여 부등식

$$
-e^{-x+1} \leq a x+b \leq e^{x-2}
$$

이 성립한다.
$|M \times m|=\frac{q}{p}$ 일 때, $p+q$ 의 값을 구하시오.
(단, p 와 q 는 서로소인 자연수이다.)

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 사차함수 $f(x)$ 와 구간 $(0, \infty)$ 에서 $g(x) \geq 0$ 인 함수 $g(x)$ 가 다음 조건을 만족시킨다.
(가) $x \leq-3$ 인 모든 실수 x 에 대하여 $f(x) \geq f(-3)$ 이다.
(나) $x>-3$ 인 모든 실수 x 에 대하여

$$
g(x+3)\{f(x)-f(0)\}^{2}=f^{\prime}(x) \text { 이다. }
$$

$\int_{4}^{5} g(x) d x=\frac{q}{p}$ 일 때, $p+q$ 의 값을 구하시오.
(단, p 와 q 는 서로소인 자연수이다.)

- MEMO

- 쓰인 개념 정리

실수 t 에 대하여 함수 $f(x)$ 를

$$
f(x)=\left\{\begin{array}{cc}
1-|x-t| & (|x-t| \leq 1) \\
0 & (|x-t|>1)
\end{array}\right.
$$

이라 할 때, 어떤 홀수 k 에 대하여 함수

$$
g(t)=\int_{k}^{k+8} f(x) \cos (\pi x) d x
$$

가 다음 조건을 만족시킨다.
함수 $g(t)$ 가 $t=\alpha$ 에서 극소이고 $g(\alpha)<0$ 인 모든 α 를 작은 수부터 크기순으로 나열한 것을 $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ (m 은 자연수)라 할 때, $\sum_{i=1}^{m} a_{i}=45$ 이다.

- MEMO

- 쓰인 개념 정리

