§ 11.1 Sequences

- \bigcirc Defn> A sequence is a function defined on \mathbb{N} , whose range is contained in \mathbb{R} . $f: \mathbb{N} \to \mathbb{R}$ or $f: \mathbb{N} \to \mathbb{C}$, $f(n) := a_n$.
- \bigcirc Defn> A sequence $\{a_n\}$ has the limit $L\Leftrightarrow \lim_{n\to\infty}a_n=L\Leftrightarrow \forall\, \varepsilon>0,\ \exists\, N\in\mathbb{N}$ s.t. $n>N\Rightarrow |a_n-L|<\varepsilon$
- $\bigcirc\hspace{-0.8cm} \text{ Defn> } \lim_{n\to\infty} a_n = \infty \ \Leftrightarrow \ \forall \ M>0, \ \exists \ N\in \mathbb{N} \ \text{ s.t. } \ n>N \ \Rightarrow \ a_n>M$
- \bigcirc Thm> If $\lim_{x \to \infty} f(x) = L$ and $f(x) = a_n$, then $\lim_{n \to \infty} a_n = L$.

pf) Let
$$\varepsilon>0$$
 be given. Since $\lim_{x\to\infty}f(x)=L$, $\exists\,M>0$ s.t. $x>M\Rightarrow |f(x)-L|<\varepsilon$. Take $N=[M]+1\in\mathbb{N}$ then $M<[M]+1=N$. If $n>N$ then $n>N>M\Rightarrow |f(x)-L|<\varepsilon$, $|a_n-L|<\varepsilon$, $\lim_{n\to\infty}a_n=L$

ex)
$$\lim_{n \to \infty} \frac{\ln n}{n} = 0 \quad (\because \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1}{x} = 0)$$

 \bigcirc Thm> Suppose that $\{a_n\}$ and $\{b_n\}$ are convergent sequences, then the following property holds.

$$\textcircled{4} \lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \ (b_n \neq 0, \ \lim_{n \to \infty} b_n \neq 0)$$

pf) ① Since
$$\lim_{n\to\infty}b_n=M\neq 0$$
 and $\frac{|M|}{2}>0$, $\exists N_1\in\mathbb{N}$ s.t. $n>N_1\Rightarrow$ $|b_n-M|<\frac{|M|}{2}\Rightarrow ||b_n|-|M||\leq |b_n-M|<\frac{|M|}{2}\Rightarrow \frac{|M|}{2}<|b_n|<|M|+\frac{|M|}{2}\Rightarrow \frac{1}{|b_n|}<\frac{2}{|M|}$. Then for $n>N_1$, we have

$$\begin{split} &\left|\frac{a_n}{b_n} - \frac{L}{M}\right| = \frac{Ma_n - Lb_n}{Mb_n} = \frac{\left|Ma_n - Lb_n - ML + ML\right|}{\left|M\right| \left|b_n\right|} \\ &= \frac{1}{\left|M\right| \left|b_n\right|} \left|M(a_n - L) + L\left(M - b_n\right)\right| \leq \frac{2}{M^2} \left(\left|M\right| \left|a_n - L\right| + \left|L\right| \left|b_n - M\right|\right) \\ &= \frac{2}{\left|M\right|} \left|a_n - L\right| + \frac{2\left|L\right|}{M^2} \left|b_n - M\right|. \end{split}$$

Since
$$\lim_{n\to\infty}a_n=L$$
 and $\frac{|M|}{4}\varepsilon>0$, $\exists N_2\in\mathbb{N}$ s.t. $n>N_2\Rightarrow \left|a_n-L\right|<\frac{|M|}{4}\varepsilon$
Since $\lim_{n\to\infty}b_n=M$ and $\frac{M^2\varepsilon}{4(|L|+1)}>0$, $\exists N_3\in\mathbb{N}$ s.t. $n>N_3\Rightarrow$ $\left|b_n-M\right|<\frac{M^2\varepsilon}{4(|L|+1)}$

Therefore, take $N:=\max\{N_1,\,N_2,\,N_3\}$ then $n>N\Rightarrow$ $\left|\frac{a_n}{b_n}-\frac{L}{M}\right|\leq \frac{2}{|M|}\left|a_n-L\right|+\frac{2|L|}{M^2}\left|b_n-M\right|<\frac{2}{|M|}\times\frac{|M|}{4}\varepsilon+\frac{2|L|}{M^2}\times\frac{M^2\varepsilon}{4(|L|+1)}$ $<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon. \ \blacksquare$

$$2 \lim_{n \to \infty} |a_n| = 0 \iff \lim_{n \to \infty} a_n = 0$$

ex)
$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$
 since $\lim_{n \to \infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n \to \infty} \frac{1}{n} = 0$.

 $\ \, \bigcirc$ Thm> A sequence $\{a_n\}$ can have at most one limit.

pf) Suppose that
$$\lim_{n\to\infty} a_n = L$$
 and $\lim_{n\to\infty} a_n = M$ $(L \neq M)$.

$$\text{For } \varepsilon = \frac{\mid \! L - M \! \mid}{2} \! > 0, \ \exists \, N_1, \, N_2 \! \in \! \mathbb{N} \text{ s.t.}$$

$$n>N_1 \ \Rightarrow \ \left| \left| a_n-L \right| < \frac{\left| L-M \right|}{2}, \ n>N_2 \ \Rightarrow \ \left| \left| a_n-M \right| < \frac{\left| L-M \right|}{2}$$

Take
$$N:=\max\{N_1,\,N_2\}$$
 then $n>N \Rightarrow |L-M|=|L-a_n+a_n-M|$
$$\leq \left|a_n-L\right|+\left|a_n-M\right|<\frac{|L-M|}{2}+\frac{|L-M|}{2}=|L-M| \text{ and it is a contradiction.} \blacksquare$$

Alternative proof :
$$\forall \, \varepsilon > 0, \, |L - M| \le |a_n - L| + |a_n - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 $\therefore L = M$

 \bigcirc Thm> If $\{a_n\}$ is a convergent sequence and $a_n\geq 0$ for $\forall\, n\geq n_0$ for some $n_0\in\mathbb{N}$, then $\lim_{n\to\infty}a_n=L\geq 0$.

pf) Suppose
$$\lim_{n \to \infty} a_n = L < 0$$
. For $\varepsilon = -\frac{L}{2} > 0$, $\exists N \in \mathbb{N}$ s.t. $n > N \Rightarrow |a_n - L| < -\frac{L}{2} \Rightarrow L + \frac{L}{2} < a_n < L - \frac{L}{2} = \frac{L}{2} < 0$ and it is a contradiction.

 \bigcirc Thm> A real function f is continuous at $a \Leftrightarrow \underset{x \to a}{\lim} f(x) = f(a) \Leftrightarrow$ For every sequence $\{a_n\}$ that converges to a, $\underset{n \to \infty}{\lim} f(a_n) = f(a)$. $(a_n \neq a)$

pf)
$$[\Rightarrow]$$
 Let $\lim_{n\to\infty} a_n = a$ and $\varepsilon > 0$ be given. Since f is continuous at a , $\exists \, \delta > 0$ s.t. $|x-a| < \delta \, \Rightarrow \, |f(x)-f(a)| < \varepsilon$. For $\delta > 0$, $\exists \, N \in \mathbb{N}$ s.t. $n > N \, \Rightarrow \, |a_n-a| < \delta \, \Rightarrow \, |f(a_n)-f(a)| < \varepsilon$, $\therefore \lim_{n\to\infty} f(a_n) = f(a)$

[\Leftarrow] Assume that f is not continuous at a, then $\exists \, \varepsilon_0 > 0, \, \, \forall \, \delta > 0, \, \, \exists \, x_\delta$ s.t. $\big| x_\delta - a \big| < \delta \, \, \text{but} \, \, \big| f(x_\delta) - f(a) \big| \ge \varepsilon_0$. Thus,

$$\text{For } \delta=1, \ \exists \, x_1 \ \text{s.t.} \ \left| \, x_1-a \, \right| <1, \ \left| \, f(x_1)-f(a) \, \right| \geq \varepsilon_0$$

$$\text{For } \delta = \frac{1}{2}, \ \exists \, x_2 \text{ s.t. } \left| \, x_2 - a \, \right| < \frac{1}{2}, \ \left| \, f(x_2) - f(a) \, \right| \geq \varepsilon_0$$

:

$$\text{For } \delta = \frac{1}{n}, \ \exists \, x_n \text{ s.t. } \left| x_n - a \right| < \frac{1}{n}, \ \left| f(x_n) - f(a) \right| \geq \varepsilon_0$$

Consider $\{x_n\}$ and $\{f(x_n)\}$. Since $\lim_{n\to\infty} \left|x_n-a\right|=0$, $\lim_{n\to\infty} (x_n-a)=0$ and

$$\lim_{n\to\infty} x_n = a$$
, $\lim_{n\to\infty} f(x_n) \neq f(a)$ and it is a contradiction.

O Note

$$\lim_{x\to a} f(x) = f\Bigl(\lim_{x\to a} x\Bigr) = f(a), \ \lim_{n\to \infty} f(a_n) = f\Bigl(\lim_{n\to \infty} a_n\Bigr) = f(a).$$

ex)
$$\lim_{n\to\infty}\sin\left(\frac{\pi}{n}\right)=\sin\left(\lim_{n\to\infty}\frac{\pi}{n}\right)=\sin 0=0$$
 (:: $f(x)=\sin x$ is continuous at 0 and $\lim_{n\to\infty}\frac{\pi}{n}=0$.)

pf) Let
$$\varepsilon>0$$
 be given. Since $\lim_{n\to\infty}b_n=\lim_{n\to\infty}c_n=L$, $\exists\,N_1,\,N_2\in\mathbb{N}$ s.t. $n>N_1 \Rightarrow \, \big|\,b_n-L\,\big|<\varepsilon,\,\,n>N_2 \Rightarrow \, \big|\,c_n-L\,\big|<\varepsilon$ Take $N:=\max\{N_1,\,N_2,\,n_0\}$, then $n>N \Rightarrow \, L-\varepsilon< b_n \leq a_n \leq c_n < L+\varepsilon$ $\Rightarrow \, \big|\,a_n-L\,\big|<\varepsilon,\,\,\lim a_n=L$

- \bigcirc Defn> * A sequence $\{a_n\}$ is called increasing if $a_n < a_{n+1}$ for $\forall n \ge 1$.
 - * A sequence $\{a_n\}$ is called decreasing if $a_n > a_{n+1}$ for $\forall n \geq 1$.
 - * A sequence $\{a_n\}$ is called monotonic if it is either increasing or decreasing.

$$\begin{split} & \langle \text{Example} \rangle \ \ a_n = \frac{n}{n^2+1}, \ \ f(x) = \frac{x}{x^2+1}. \ \ \text{Since} \ \ f(x) = \frac{1-x^2}{(x^2+1)^2} < 0 \ \ \text{for} \ \ x > 1 \\ & \text{and} \ \ f \ \ \text{is continuous on the interval} \ \ [1, \, \infty), \ \ f \ \ \text{is decreasing on} \ \ [1, \, \infty). \\ & \Rightarrow f(n) = a_n > a_{n+1} = f(n+1) \ \ \text{for} \ \ \forall \, n \in \mathbb{N}, \ \ \{a_n\} \ \ \text{is decreasing}. \end{split}$$

- \bigcirc Thm> * A sequence $\{a_n\}$ is bounded above $\Leftrightarrow \exists M \in \mathbb{R}$ s.t. $a_n \leq M$ for $\forall n \in \mathbb{N}$
 - * A sequence $\{a_n\}$ is bounded above $\Leftrightarrow \exists M \in \mathbb{R}$ s.t. $M \leq a_n$ for $\forall n \in \mathbb{N}$
 - * A sequence $\{a_n\}$ is bounded \Leftrightarrow $\{a_n\}$ is bounded below and above
- \bigcirc Defn> Let $\varnothing \neq S \subseteq \mathbb{R}$.
 - (a) The set S is said to be bounded above if $\exists u \in \mathbb{R}$ s.t. $s \leq u$ for $\forall s \in S$. Each such number u is called an upper bound for S.
 - (b) The set S is said to be bounded below if $\exists v \in \mathbb{R}$ s.t. $s \geq v$ for $\forall s \in S$. Each such number v is called a lower bound for S.
 - (c) A set is said to be bounded if it is both bounded above and bounded below.
 - (d) A set is said to be unbounded if it is not bounded.
- Thm> Every convergent sequence is bounded.

pf) Let
$$\lim_{n\to\infty}a_n=L$$
. For $\varepsilon=1$, $\exists\,N\!\in\!\mathbb{N}$ s.t. $n>N$ $\Rightarrow \, \big|a_n-L\big|<1$ $\Rightarrow \, \big|a_n\big|=\big|a_n-L+L\big|\leq \big|a_n-L\big|+\big|L\big|<1+\big|L\big|$. Take $M:=\max\{\big|a_1\big|,\,\big|a_2\big|,\,\cdots,\,\big|a_N\big|,\,1+\big|L\big|\}$ $\Rightarrow \, \forall\,n\!\in\!\mathbb{N},\,\,\big|a_n\big|\leq M$ and therefore $\{a_n\}$ is bounded. \blacksquare

pf) Suppose
$$L>\beta$$
. For $\varepsilon_0=L-\beta>0$, $\exists N_1\in\mathbb{N}$ s.t. $n>N_1\Rightarrow$ $\left|a_n-L\right|<\varepsilon_0=L-\beta\Rightarrow \beta=L-\varepsilon_0< a_n< L+\varepsilon_0=2L-\beta\Rightarrow \beta< a_n.$ Take $N:=\max\{n_0,\,N_1\}$ then $\beta< a_n\leq \beta$ and it is a contradiction.

- \bigcirc Defn> Let $\varnothing \neq S \subseteq \mathbb{R}$.
 - * An upper bound u_0 for S is the least upper bound for $S \Leftrightarrow u_0 \leq u$ for every upper bound u for $S \Leftrightarrow u_0 = \sup S \Leftrightarrow u_0 = \limsup S$
 - * A lower bound v_0 for S is the greatest lower bound for $S \Leftrightarrow v_0 \geq v$ for every lower bound v for $S \Leftrightarrow v_0 = \inf S \Leftrightarrow v_0 = \operatorname{glb} S$
- The Completeness Axiom

Every nonempty subset of $\mathbb R$ that is bounded above(below) has a least upper bound(greatest lower bound) in $\mathbb R$.

- \bigcirc Monotone Sequence Theorem (MST) : Every bounded, monotonic sequence converges. $\Leftrightarrow \{a_n\}$: increasing & bounded above or decreasing & bounded below \Rightarrow converges
 - pf) Suppose $\{a_n\}$ is increasing and bounded above. Let $S=\{a_n\mid n\geq 1\}\Rightarrow S$ has a least upper bound L by the Completeness Axiom. Let $\varepsilon>0$ be given then $L-\varepsilon$ is not an upper bound for S, and $\exists \, a_N$ s.t. $L-\varepsilon< a_N\leq L$.

Since
$$\left\{a_n\right\}$$
 is increasing, $n > N \Rightarrow L - \varepsilon < a_N \le a_n \le L < L + \varepsilon \Rightarrow \left|a_n - L\right| < \varepsilon$ $\therefore \lim_{n \to \infty} a_n = L = \sup S \blacksquare$

$$\mbox{Example> }a_1=\sqrt{2}\,,\ a_{n\,+\,1}=\sqrt{2a_n}\,.$$
 Find the limit of $\{a_n\}.$

①
$$\{a_n\}$$
 is increasing since $a_1=\sqrt{2}<\sqrt{2\sqrt{2}}=a_2$ and if $a_k< a_{k+1}$ then $a_{k+1}=\sqrt{2a_k}<\sqrt{2a_{k+1}}=a_{k+2}$. Therefore, $a_n< a_{n+1}$ for $\forall\, n\!\in\!\mathbb{N}.$

②
$$\{a_n\}$$
 is bounded below by $\sqrt{2}$ and above by 2 since $\sqrt{2} \le a_1 = \sqrt{2} \le 2$ and if $\sqrt{2} \le a_k \le 2$ then $\sqrt{2} \le \sqrt{2\sqrt{2}} \le a_{k+1} = \sqrt{2a_k} \le 2$.

Therefore, $\sqrt{2} \le a_n \le 2$ for $\forall n \in \mathbb{N}$.

It follows from the MST that $\lim_{n\to\infty}a_n$ exists. Let $\lim_{n\to\infty}a_n=L$ then $\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}\sqrt{2a_n} \text{ and } L=\sqrt{2L} \text{ , } L=0 \text{ or } L=2. \text{ Since } \sqrt{2}\leq a_n\leq 2,$ $\sqrt{2}\leq L\leq 2 \text{ and } L=2. \therefore \lim_{n\to\infty}a_n=2$

 $\langle \text{Example} \rangle$ $a_1 = 2$, $a_{n+1} = \frac{1}{2}(a_n + 6)$. Find the limit of $\{a_n\}$

① $\{a_n\}$ is increasing since $a_1=2<4=a_2$ and if $a_k< a_{k+1}$ then $a_{k+1}=\frac{1}{2}(a_k+6)<\frac{1}{2}(a_{k+1}+6)=a_{k+2}.$ Therefore, $a_n< a_{n+1}$ for $\forall\,n\in\mathbb{N}.$

By the MST, $\lim_{n\to\infty}a_n$ exists. Let $\lim_{n\to\infty}a_n=L$ then $\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}\left(\frac{1}{2}(a_n+6)\right)$ and $L=\frac{1}{2}(L+6),\ L=6.$ $\therefore \lim_{n\to\infty}a_n=6$

 $\langle \text{Example} \rangle$ Let $e_n = \left(1 + \frac{1}{n}\right)^n$. Find the limit of $\{e_n\}$

$$\begin{split} e_{n+1} &= \left(1 + \frac{1}{n+1}\right)^{n+1} = 1 + {}_{n+1}\mathbf{C}_1\!\!\left(\frac{1}{n+1}\right) + {}_{n+1}\mathbf{C}_2\!\!\left(\frac{1}{n+1}\right)^2 + {}_{n+1}\mathbf{C}_3\!\!\left(\frac{1}{n+1}\right)^3 + \cdots + {}_{n+1}\mathbf{C}_{n+1}\!\!\left(\frac{1}{n+1}\right)^{n+1} \\ &= 1 + 1 + \frac{1}{2!}\!\left(1 - \frac{1}{n+1}\right) + \frac{1}{3!}\!\left(1 - \frac{1}{n+1}\right)\!\!\left(1 - \frac{2}{n+1}\right) + \cdots + \frac{1}{(n+1)!}\!\left(1 - \frac{1}{n+1}\right)\!\!\left(1 - \frac{2}{n+1}\right) \cdots \left(1 - \frac{n}{n+1}\right) \end{split}$$

Therefore, $e_n < e_{n+1}$ for $\forall n \in \mathbb{N}$.

$$\leq 1+1+\frac{1}{2!}+\frac{1}{3!}+ \ \cdots \ +\frac{1}{n!} \leq 1+1+\frac{1}{2}+\frac{1}{2^2}+ \ \cdots \ +\frac{1}{2^{n-1}}=1+\frac{1}{1-1/2}=3.$$

Therefore, $e_n \leq 3$ for $\forall n \in \mathbb{N}$.

By the MST, $\lim_{n\to\infty}e_n$ exists, and it is actually the so-called Euler's constant e.

$$\langle \text{Example} \rangle \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots = \lim_{n \to \infty} e_n.$$

$$\text{pf)} \ \ S_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \ \cdots \ + \frac{1}{n!} < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \ \cdots \ + \frac{1}{2^{n-1}} < 3, \ \ S_n < S_{n+1}.$$

$$\Rightarrow \text{ By the MST, } \lim_{n\to\infty} S_n = L = \sum_{n=0}^\infty \frac{1}{n!}. \text{ Let } S_n = \sum_{k=0}^n \frac{1}{k!} \text{ and } T_n = \left(1 + \frac{1}{n}\right)^n.$$

$$\leq 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}=S_n$$
. Therefore, $T_n\leq S_n$ for $\forall n\in\mathbb{N}$.

$$e = \lim_{n \to \infty} T_n \le \lim_{n \to \infty} S_n = L.$$

Fix the value of m and send $n \to \infty$, then $e = \lim_{n \to \infty} T_n \ge 1 + 1 + \frac{1}{2!} + \cdots + \frac{1}{m!} = S_m$.

Therefore, $\forall m \in \mathbb{N}, S_m \leq e \text{ and } L = \lim_{n \to \infty} S_n \leq e$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = L = \sum_{n=0}^{\infty} \frac{1}{n!} \blacksquare$$

$$\langle \text{Example} \rangle$$
 Prove $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$, $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$

 $\langle \text{Example} \rangle$ For sequence $\{x_n\}$ such that $x_n > 0$, let $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \alpha$. Prove :

$$2 \alpha > 1 : \lim_{n \to \infty} x_n = \infty$$

$$\ \ \alpha = 1 : Nothing$$

§ 11.2 Series

(Infinite) Series

$$a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n \text{ or } \sum a_n$$

□ Defn>

Given a series $\sum a_n$, let S_n denote its nth partial sum : $S_n = \sum_{k=1}^n a_k$. If $\{S_n\}$ is convergent and $\lim_{n \to \infty} S_n \in \mathbb{R}$, then $\sum a_n$ is called convergent. Then $a_1 + a_2 + a_3 + \cdots = S$ or $\sum_{n=1}^\infty a_n = S$. S is called the sum of the series $\sum a_n$. If $\{S_n\}$ is divergent then $\sum a_n$ is divergent.

* Note :
$$\sum_{n=1}^{\infty} a_n = S = \lim_{n \to \infty} S_n$$

⟨Example⟩ Geometric Series

If |r| < 1 then the series $a + ar + ar^2 + \cdots$ converges to $\frac{a}{1-r}$ $(a \neq 0)$. Therefore, $\sum ar^{n-1}$ is convergent $\Leftrightarrow |r| < 1$ $(a \neq 0)$.

<Example> Harmonic Series

$$1+rac{1}{2}+rac{1}{3}+\cdots=\sumrac{1}{n}=\infty$$
, since $S_{2^n}>1+rac{n}{2}$ and therefore $\lim_{n o\infty}S_n=\infty$.

 \bigcirc Thm> $\sum a_n$ is convergent $\Rightarrow \lim_{n\to\infty} a_n = 0$

pf) Let
$$\lim_{n\to\infty} S_n = S$$
, then

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0. \blacksquare$$

Test for Divergence

If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ is divergent.

<Example> For the sequence $a_n = \frac{n^2}{5n^2+4}$, $\sum_{n=1}^{\infty} a_n$ is divergent since

$$\lim_{n \to \infty} \frac{n^2}{5n^2 + 4} = \frac{1}{5} \neq 0.$$

 $\langle \text{Example} \rangle$ For the sequence $a_n = n \sin \frac{1}{n}$, $\sum_{n=1}^{\infty} a_n$ is divergent since

$$\lim_{n \to \infty} n \sin \frac{1}{n} = \lim_{t \to 0+} \frac{\sin t}{t} = 1 \neq 0.$$

 \bigcirc Thm> If $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ are convergent, then for constant $c \in \mathbb{R}$,

proof by the definition of $\sum_{n=1}^{\infty} a_n$ and the limit laws of a converging limit.

Note

A finite number of terms does not affect the convergence or divergence of a series.

$$\begin{split} \text{\langle Example \rangle} \; & \sum_{n=2}^{\infty} \frac{1}{n^3 - n} = \sum_{n=2}^{\infty} \frac{1}{n(n-1)(n+1)} = \frac{1}{2} \sum_{n=2}^{\infty} \left[\frac{1}{n(n-1)} - \frac{1}{n(n+1)} \right] \\ & = \lim_{n \to \infty} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{n(n+1)} \right) = \frac{1}{4}. \end{split}$$

 $\mbox{Example> } \sum_{n=1}^{\infty} \tan^{-1} n \ \mbox{is divergent since } \lim_{n \to \infty} \tan^{-1} n = \frac{\pi}{2} \neq 0.$

 $\langle \text{Example} \rangle \sum_{n=1}^{\infty} \sin n$ is convergent since $\lim_{n \to \infty} \sin n$ is not convergent.

 $\langle \text{Example} \rangle \sum_{n=1}^{\infty} (x+2)^n$ is convergent if -3 < x < -1.

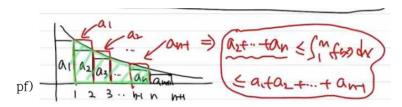
 $\langle \text{Example} \rangle \sum_{n=0}^{\infty} e^{nx}$ is convergent if x < 0.

 $\mbox{Example> } \sum_{n=0}^{\infty} \frac{\sin^n x}{3^n} \mbox{ is convergent regardless of } x \mbox{ if } x \in \mathbb{R}.$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{n}{(n+1)!} = \sum_{n=1}^{\infty} \left[\frac{1}{n!} - \frac{1}{(n+1)!} \right] = \lim_{n \to \infty} \left(1 - \frac{1}{(n+1)!} \right) = 1$$

§ 11.3 The Integral Test and Estimate of Sums

- (Q) The convergence of $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$?
- © The Integral Test Suppose f is a continuous, positive, and a decreasing function on $[1,\infty)$ and $f(n)=a_n$ for $\forall\,n\!\in\!\mathbb{N}$. Then $\sum_{n=1}^\infty a_n$ is convergent $\Leftrightarrow\int_1^\infty f(x)dx$ is convergent.



If $\int_1^\infty f(x)dx$ is convergent then $a_2+a_3+\cdots+a_n=S_n-a_1\leq \int_1^n f(x)dx\leq \int_1^\infty f(x)dx$ and $S_n\leq a_1+\int_1^\infty f(x)dx=M$: An upper bound. Therefore, S_n is increasing and $S_n\leq M$ for $M\in\mathbb{R}$. By the MCT, $\lim_{n\to\infty}S_n$ exists and $\sum_{n=1}^\infty a_n$ is convergent.

If $\int_1^\infty f(x)dx$ is divergent then $\lim_{n\to\infty}\int_1^n f(x)dx=\infty$. Since $\int_1^n f(x)dx \leq a_1+\cdots+a_{n-1}=S_{n-1}, \ \lim_{n\to\infty}S_{n-1}=\infty \ \ \text{and} \ \ \lim_{n\to\infty}S_n=\infty \ \ \text{and} \ \ \sum_{n=1}^\infty a_n \ \ \text{is divergent.}$

<Example> For $\sum_{n=1}^{\infty} \frac{\ln n}{n}$, let $f(x) = \frac{\ln x}{x}$ then f(x) > 0 for x > 1, and f'(x) < 0 for x > e. Therefore, f is continuous, positive, and decreasing on $[e, \infty)$.

Since
$$\int_e^\infty \frac{\ln x}{x} dx = \lim_{b \to \infty} \int_e^b \frac{\ln x}{x} dx = \lim_{b \to \infty} \left[\frac{1}{2} (\ln x)^2 \right]_e^b = \lim_{b \to \infty} \frac{1}{2} \left((\ln b)^2 - 1 \right) = \infty.$$

Since $\int_e^\infty f(x)dx$ is divergent, $\int_1^\infty f(x)dx$ is also divergent and therefore $\sum_{n=1}^\infty a_n$ is divergent.

$$\langle \text{Example} \rangle$$
 p-series : convergence of $\sum_{p=1}^{\infty} \frac{1}{p^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$

sol) (i) p > 1: $f(x) = \frac{1}{x^p}$ is continuous, positive, and decreasing on $[1, \infty)$.

$$\begin{split} & \int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx = \lim_{t \to \infty} \int_{1}^{t} x^{-p} dx = \lim_{t \to \infty} \left[\frac{1}{1-p} x^{1-p} \right]_{1}^{t} \\ & = \lim_{t \to \infty} \frac{1}{1-p} (t^{1-p} - 1) = \lim_{t \to \infty} \frac{1}{1-p} \left(\frac{1}{t^{p-1}} - 1 \right) = \frac{1}{p-1}. \quad \text{Therefore,} \quad \sum_{n=1}^{\infty} \frac{1}{n^{p}} \text{ converges.} \end{split}$$

(ii) $0 : <math>f(x) = \frac{1}{x^p}$ is continuous, positive, and decreasing on $[1, \infty)$.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{t \to \infty} \frac{1}{1-p} (t^{1-p} - 1) = \infty. \text{ Therefore, } \sum_{n=1}^{\infty} \frac{1}{n^{p}} \text{ diverges.}$$

(iii) p = 1: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges since it is the harmonic series.

(iv)
$$p \le 0$$
: $\lim_{n \to \infty} \frac{1}{n^p} = \lim_{n \to \infty} n^{-p} = \infty$, $\lim_{n \to \infty} \frac{1}{n^p} = \lim_{n \to \infty} 1 = 1 \ne 0$ if $p = 0$

Therefore, $\sum_{p=1}^{\infty} \frac{1}{n^p}$ diverges.

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges if and only if $p > 1$.

 $\langle \text{Example} \rangle$ Determine the convergence of $\sum_{n=1}^{\infty} ne^{-n^2}$.

sol) Let
$$f(x)=\frac{x}{e^{x^2}}$$
 then $f'(x)<0$ for $x\geq 1$ and f is continuous, positive, and decreasing on $[1,\infty)$. Now we should check the convergence of
$$\int_1^\infty xe^{-x^2}dx.$$
 Since
$$\int_1^\infty xe^{-x^2}dx=\frac{1}{2}\int_1^\infty \frac{1}{e^t}dt=\lim_{b\to\infty}\frac{1}{2}\int_1^b e^{-t}dt\ (t=x^2)$$

$$=\lim_{b\to\infty}\left[-\frac{1}{2}e^{-t}\right]_1^b=\lim_{b\to\infty}\left(-\frac{1}{2e^b}+\frac{1}{2e}\right)=\frac{1}{2e},\ \sum_{n=1}^\infty ne^{-n^2}\ \text{is convergent}.$$

 $\langle \text{Example} \rangle$ Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{2^{\ln n}}$.

sol) Let
$$f(x) = \frac{1}{2^{\ln x}}$$
 then $f'(x) < 0$ for $x \ge 1$ and f is continuous, positive, and decreasing on $[1, \infty)$. Now we should check the convergence of

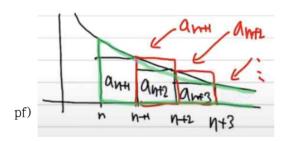
$$\begin{split} & \int_{1}^{\infty} \frac{1}{2^{\ln x}} dx. \text{ Since } \int_{1}^{\infty} \frac{1}{2^{\ln x}} dx = \int_{0}^{\infty} \left(\frac{e}{2}\right)^{u} du \text{ } (u = \ln x) \\ & = \lim_{b \to \infty} \left[\frac{(e/2)^{u}}{\ln{(e/2)}}\right]_{0}^{b} = \lim_{b \to \infty} \frac{1}{\ln{(e/2)}} \left(\left(\frac{e}{2}\right)^{b} - 1\right) = \infty, \text{ } \sum_{n=1}^{\infty} \frac{1}{2^{\ln n}} \text{ is divergent.} \end{split}$$

© Estimating the Sum of a Series

$$S = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots = \lim_{n \to \infty} S_n, \text{ let}$$

$$R_n = S - S_n = a_{n+1} + a_{n+2} + a_{n+3} + \cdots \text{ then } S = S_n + R_n.$$

© Remainder Estimate for the Integral Test Suppose $f(k)=a_k$ for $\forall\,k\!\in\!\mathbb{N}$ where f is a continuous, positive, and decreasing function on $[n,\infty)$. If $\sum_{n=1}^\infty a_n$ is convergent, then $\int_{n+1}^\infty f(x)dx \leq R_n \leq \int_n^\infty f(x)dx$.



$$\begin{split} & \langle \text{Example} \rangle \, \sum_{n=1}^{\infty} \frac{1}{n^3} \\ & \text{Since } \int_{n}^{\infty} \frac{1}{x^3} dx = \lim_{b \to \infty} \left[-\frac{1}{2x^2} \right]_{n}^{b} = \lim_{b \to \infty} \left(-\frac{1}{2b^2} + \frac{1}{2n^2} \right) = \frac{1}{2n^2}, \text{ if } n \geq 32 \text{ then } \\ & R_n \leq \frac{1}{2n^2} \leq 0.0005, \end{split}$$

O Note

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx \implies$$

$$S_n + \int_{n+1}^{\infty} f(x)dx \le S = R_n + S_n \le S_n + \int_{n}^{\infty} f(x)dx$$

$$\begin{split} & \langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{1}{n^2 + 4} \text{ is convergent since } \int_{1}^{\infty} \frac{1}{x^2 + 4} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2 + 4} dx \\ &= \lim_{t \to \infty} \left[\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) \right]_{1}^{t} = \lim_{t \to \infty} \frac{1}{2} \left(\tan^{-1} \left(\frac{t}{2} \right) - \tan^{-1} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{\pi}{2} - \tan^{-1} \left(\frac{1}{2} \right) \right). \end{split}$$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$$

Let
$$f(x) = \frac{x}{x^4 + 1}$$
 then $f'(x) < 0$ for $x \ge 1$ and f is continuous, positive, and

decreasing on
$$[1, \infty)$$
. Since $\int_{1}^{\infty} \frac{x}{x^4 + 1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{x}{x^4 + 1} dx = \lim_{t \to \infty} \left[\frac{1}{2} \tan^{-1}(t^2) \right]_{1}^{t}$

$$= \lim_{t \to \infty} \frac{1}{2} \left(\tan^{-1}(t^2) - \tan^{-1}(1) \right) = \frac{1}{2} \left(\frac{\pi}{2} - \frac{\pi}{4} \right) = \frac{\pi}{8}, \ \sum_{n=1}^{\infty} \frac{n}{n^4 + 1} \ \text{is convergent.}$$

§ 11.4 The Comparison Test

Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.

- (i) If $\sum_{n=1}^{\infty}b_n$ is convergent and $a_n\leq b_n$ for $\forall\,n\!\in\!\mathbb{N}$, then $\sum_{n=1}^{\infty}a_n$ is convergent.
- (ii) If $\sum_{n=1}^{\infty}b_n$ is divergent and $a_n\geq b_n$ for $\forall\,n\!\in\!\mathbb{N}$, then $\sum_{n=1}^{\infty}a_n$ is divergent.

pf) Let
$$S_n = \sum_{i=1}^{n} a_i$$
, $T_n = \sum_{i=1}^{n} b_i$.

(i) $a_n,\,b_n>0 \implies \{S_n\},\,\,\{\,T_n\}$ are increasing

Since $\sum_{n=1}^{\infty}b_n$ is convergent, $\left\{S_n\right\}$ is bounded above from the fact that

$$S_n = a_1 + \cdots + a_n \le b_1 + \cdots + b_n = T_n \le \sum_{n=1}^{\infty} b_n.$$

Since $\{S_n\}$ is increasing, $\lim_{n\to\infty}S_n=\sum_{n=1}^\infty a_n$ exists and $\sum_{n=1}^\infty a_n$ is convergent by MCT.

(ii) Since
$$b_n>0$$
 for $\forall\,n\!\in\!\mathbb{N},\;\sum_{n=1}^\infty b_n=\lim_{n\to\infty}T_n=\infty$. Since

$$T_n=b_1+\cdots+b_n\leq a_1+\cdots+a_n=S_n, \ \lim_{n\to\infty}S_n=\infty \ \ {\rm and} \ \ \sum_{n=1}^\infty a_n \ \ {\rm is \ divergent.} \ \blacksquare$$

 $\langle \text{Example} \rangle$ Determine the convergence of $\sum_{k=1}^{\infty} \frac{\ln k}{k}$.

sol) Since
$$\frac{\ln k}{k} > \frac{1}{k}$$
 for $k \ge 3$ and $\sum_{k=3}^{\infty} \frac{1}{k} = \infty$, $\sum_{k=3}^{\infty} \frac{\ln k}{k}$ is divergent and therefore

$$\sum_{k=1}^{\infty} \frac{\ln k}{k}$$
 is divergent.

 $\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent since

$$\sum_{n=1}^{\infty} \frac{1}{n!} = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots < 1 + \frac{1}{2} + \frac{1}{2^2} + \dots = \frac{1}{1 - \frac{1}{2}} = 2.$$

 $\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{5}{3n-2}$ is divergent since $\frac{5}{3n-2} > \frac{5}{3n} > \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{\ln n}{2n^3-1}$$
 is convergent since $\frac{\ln n}{2n^3-1} \leq \frac{n}{2n^3-1} \leq \frac{n}{n^3} = \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

The Limit Comparison Test

Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.

(i) If
$$\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$$
 then $\sum_{n=1}^{\infty}a_n$ and $\sum_{n=1}^{\infty}b_n$ both converges or diverges.

(ii) If
$$\lim_{n\to\infty}\frac{a_n}{b_n}=0$$
 then $\sum_{n=1}^\infty b_n$ is convergent $\Rightarrow \sum_{n=1}^\infty a_n$ is convergent.

(iii) If
$$\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$$
 then $\sum_{n=1}^{\infty}b_n$ is divergent $\Rightarrow \sum_{n=1}^{\infty}a_n$ is divergent.

$$\text{pf) (i) Since } \left. \frac{c}{2} > 0, \ \exists \, N \in \mathbb{N} \text{ s.t. } n \geq N \right. \\ \Rightarrow \left. \left| \frac{a_n}{b_n} - c \right| < \frac{c}{2}, \ \frac{c}{2} < \frac{a_n}{b_n} < \frac{3}{2}c, \right. \\$$

$$\frac{c}{2}b_n < a_n < \frac{3c}{2}b_n$$
. If $\sum_{n=1}^{\infty}b_n$ is convergent, $\sum_{n=N}^{\infty}a_n$ is convergent by the CT, and

therefore $\sum_{n=1}^{\infty} a_n$ is convergent. If $\sum_{n=1}^{\infty} b_n$ is divergent, $\sum_{n=N}^{\infty} a_n$ is divergent by the CT,

and therefore $\sum_{n=1}^{\infty} a_n$ is divergent.

(ii)
$$\exists N \in \mathbb{N}$$
 s.t. $n \ge N \implies \left| \frac{a_n}{b_n} \right| = \frac{a_n}{b_n} < 1$, $a_n < b_n$. Since $\sum_{n=1}^{\infty} b_n$ is convergent,

$$\sum_{n=N}^{\infty}a_n$$
 is convergent by the CT, and therefore $\sum_{n=1}^{\infty}a_n$ is convergent. \blacksquare

(iii)
$$\exists N \in \mathbb{N}$$
 s.t. $n \ge N \Rightarrow \left| \frac{a_n}{b_n} \right| = \frac{a_n}{b_n} > 1$, $a_n > b_n > 0$. Since $\sum_{n=1}^{\infty} b_n$ is divergent, $\sum_{n=N}^{\infty} a_n$ is divergent by the CT, and therefore $\sum_{n=1}^{\infty} a_n$ is divergent.

 $\langle \text{Example} \rangle$ Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$.

sol) Let
$$a_n=\frac{1}{\sqrt{n+1}}$$
, $b_n=\frac{1}{\sqrt{n}}$, then $\sum_{n=1}^{\infty}b_n=\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ is divergent by the p -series test. Since $\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\sqrt{n}}{\sqrt{n+1}}=1>0$, $\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\frac{1}{\sqrt{n+1}}$ is divergent.

<Example> Determine the convergence of $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$.

$$\text{sol) Let } a_n = \frac{2n^2 + 3n}{\sqrt{5 + n^5}}, \quad b_n = \frac{2}{\sqrt{n}} \quad \text{then } \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{2}{\sqrt{n}} \quad \text{is divergent by the } p$$

$$-\text{series test. Since } \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^{5/2} + 3n^{3/2}}{2\sqrt{5 + n^5}} = 1 > 0, \quad \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}} \quad \text{is divergent.}$$

$$\text{divergent.}$$

 $\langle \text{Example} \rangle$ Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^3 + 100}$.

sol) Let
$$a_n=\frac{1}{n^3+100}$$
, $b_n=\frac{1}{n^3}$ then $\sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^3}$ is convergent by the p -series test. Since $\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n^3}{n^3+100}=1>0$, $\sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{1}{n^3+100}$ is convergent.

 $\langle \text{Example} \rangle$ Determine the convergence of $\sum_{n=1}^{\infty} \frac{n \ln n + 1}{n^2 + 5}$.

sol) Let
$$a_n=\frac{n\ln n+1}{n^2+5}$$
, $b_n=\frac{1}{n}$ then $\sum_{n=1}^{\infty}b_n=\sum_{n=1}^{\infty}\frac{1}{n}$ is divergent by the p -series test. Since $\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n^2\ln n+n}{n^2+5}=\infty$, $\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\frac{n\ln n+1}{n^2+5}$ is divergent.

§ 11.5 Alternating Series and Absolute Convergence

If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + \cdots$ $(b_n > 0)$ satisfies the conditions (i) $b_{n+1} \le b_n$ for $\forall \, n \in \mathbb{N}$ and (ii) $\lim_{n \to \infty} b_n = 0$, then $\sum_{n=1}^{\infty} (-1)^{n-1}b_n$ is convergent.

pf) Let
$$S_{2n}=b_1-b_2+b_3-b_4+\cdots+b_{2n-1}-b_{2n}=S_{2n-2}+b_{2n-1}-b_{2n}$$
 $\geq S_{2n-2}\Rightarrow \{S_{2n}\}$ increases. Since $S_{2n}=b_1-(b_2-b_3)-(b_4-b_5)-\cdots-b_{2n}\leq b_1,\ \{S_{2n}\}$ is bounded above. By the MCT, $\{S_{2n}\}$ is convergent and let $\lim_{n\to\infty}S_{2n}=S$. Since $S_{2n+1}=S_{2n}+b_{2n+1}$ and $\lim_{n\to\infty}b_n=\lim_{n\to\infty}b_{2n+1}=0,\ \lim_{n\to\infty}S_{2n+1}=\lim_{n\to\infty}S_{2n}=S$ and $\sum_{n=1}^{\infty}(-1)^{n-1}b_n$ is

convergent.

$$\begin{split} & \langle \text{Example} \rangle \ \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1} \\ & \text{Let } f(x) = \frac{x^2}{x^3+1} \ \text{then } f'(x) = \frac{x(2-x^3)}{(x^3+1)^2} \ \text{and } f \ \text{is decreasing on } [2,\,\infty). \\ & \text{Since } \lim_{n\to\infty} \frac{n^2}{n^3+1} = 0, \ \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1} \ \text{is convergent by the AST.} \end{split}$$

Alternating Series Estimation Theorem

If $S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is an alternating series, then $|R_n| = |S - S_n| \le b_{n+1}$.

pf) Since
$$S_{2n} = b_1 - b_2 + b_3 - b_4 + \cdots + b_{2n-1} - b_{2n} = S_{2n-2} + b_{2n-1} - b_{2n}$$
, $S_{2n} \geq S_{2n-1}$ and $\{S_{2n}\}$ increases. Since $S_{2n+1} = S_{2n-1} - (b_{2n} - b_{2n+1}) \leq S_{2n-1}$, $\{S_{2n-1}\}$ decreases and $S_2 \leq S_4 \leq \cdots \leq S \leq \cdots \leq S_3 \leq S_1$. $\Rightarrow \forall n, k \in \mathbb{N}, \ S_{2k} \leq S \leq S_{2n+1}.$ If $k = n$ then $S_{2n} \leq S \leq S_{2n+1}$ and $0 \leq S - S_{2n} \leq b_{2n+1}, \ |S - S_{2n}| \leq b_{2n+1}.$ If $k = n+1$ then $S_{2n+2} \leq S \leq S_{2n+1}$ and $-b_{2n+2} \leq S - S_{2n+1} \leq 0$, $|S - S_{2n+1}| \leq b_{2n+2}.$ Thus, $|R_n| = |S - S_n| \leq b_{n+1}.$

$$\langle \text{Example} \rangle S = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}, |S - S_6| \leq \frac{1}{7!}.$$

- Absolute Convergence and Conditional Convergence
 - * $\sum_{n=1}^{\infty} a_n$ is absolutely convergent $\Leftrightarrow \sum_{n=1}^{\infty} |a_n|$ is convergent
 - * $\sum_{n=1}^{\infty} a_n$ is conditionally convergent $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ is convergent and $\sum_{n=1}^{\infty} |a_n|$ is divergent
- \bigcirc Thm> $\sum_{n=1}^{\infty}a_n$ is absolutely convergent $\Leftrightarrow \sum_{n=1}^{\infty}a_n$ is convergent

$$\text{pf)} \quad \forall \, n \in \mathbb{N}, \quad 0 \leq a_n + \, \left| \, a_n \, \right| \leq 2 \, \left| \, a_n \, \right|. \quad \text{Since} \quad \sum_{n \, = \, 1}^\infty \left| \, a_n \, \right| \quad \text{is convergent,} \quad \sum_{n \, = \, 1}^\infty 2 \, \left| \, a_n \, \right| \quad \text{is}$$

convergent. By the CT, $\sum_{n=1}^{\infty} (a_n + |a_n|)$ is convergent. Therefore,

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left[\left(a_n + \left| a_n \right| \right) - \left| a_n \right| \right] \text{ is convergent. } \blacksquare$$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is convergent } (\because p=2>1) \text{ and } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} \text{ is absolutely convergent.}$$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1} + \frac{\cos 2}{2} + \frac{\cos 3}{3} + \cdots$$

Since
$$0 \le \left| \frac{\cos n}{n^2} \right| \le \frac{1}{n^2}$$
 and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, $\sum_{n=1}^{\infty} \left| \frac{\cos n}{n^2} \right|$ and $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ is

$$\langle \text{Example} \rangle$$
 (1) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$ (2) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$ (3) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{2n+1}$

(1) Since
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^3} \right| = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 converges, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$ is absolutely convergent and it converges.

(2)
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt[3]{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \text{ diverges and } \lim_{n \to \infty} \frac{1}{\sqrt[3]{n}} = 0, \ b_{n+1} = \frac{1}{\sqrt[3]{n+1}} < b_n = \frac{1}{\sqrt[3]{n}}.$$
Therefore,
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}} \text{ is convergent by the AST.}$$

(3) Since
$$\lim_{n\to\infty}\frac{n}{2n+1}=\frac{1}{2}\neq 0$$
, $\lim_{n\to\infty}(-1)^n\frac{n}{2n+1}$ does not exist and therefore

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{2n+1}$$
 is divergent.

- \bigcirc Defn> A series $\sum_{n=1}^{\infty}b_n$ is a rearrangement of a series $\sum_{n=1}^{\infty}a_n\Leftrightarrow$ There exists a bijection of $f:\mathbb{N}\to\mathbb{N}$ s.t. $b_n=a_{f(n)}.$
- \bigcirc Thm> If $\sum_{n=1}^{\infty}a_n$ is absolutely convergent and $\sum_{n=1}^{\infty}b_n$ is any rearrangement of $\sum_{n=1}^{\infty}a_n$, then $\sum_{n=1}^{\infty}b_n$ is absolutely convergent where $\sum_{n=1}^{\infty}b_n=\sum_{n=1}^{\infty}a_n$.
- <Example> $\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n-1} \text{ is divergent since } \lim_{n \to \infty} \frac{3n-1}{2n-1} = \frac{3}{2} \text{ and } \lim_{n \to \infty} (-1)^n \frac{3n-1}{2n-1} \text{ is divergent.}$
- $$\begin{split} & \langle \text{Example} \rangle \, \sum_{n=1}^{\infty} (-1)^{n-1} \frac{e^{1/n}}{n} \text{ is convergent since } \lim_{n \to \infty} \frac{1}{n} e^{1/n} = 0 \text{ and if } f(x) = \frac{e^{1/x}}{x} \text{ then } \\ & \text{since } f'(x) < 0 \text{ for } x \geq 1, \, \left\{ \frac{e^{1/n}}{n} \right\} \text{ is decreasing.} \end{split}$$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!}{(2^n n!)^2}$$

$$\langle \text{Example} \rangle \sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n(\ln n)^2}$$

$$\sum_{n=2}^{\infty}\frac{1}{n(\ln n)^2} \text{ is convergent since } \int \frac{1}{x(\ln x)^2} dx = -\frac{1}{\ln x} + C \text{ and }$$

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x(\ln x)^{2}} dx = \lim_{b \to \infty} \left[-\frac{1}{\ln x} \right]_{2}^{b} = \lim_{b \to \infty} \left(-\frac{1}{\ln b} + \frac{1}{\ln 2} \right) = \frac{1}{\ln 2}.$$

Therefore, $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n(\ln n)^2}$ is absolutely convergent and it converges.

$$(f(x) = \frac{1}{x(\ln x)^2}$$
 is continuous, positive, and decreasing on $[2, \infty)$.)

$$\begin{array}{l} \text{\langle Example \rangle} \; \sum_{n=1}^{\infty} \frac{\cos n\pi}{n \sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt{n}} \; \text{ is absolutely convergent since } \left| \frac{(-1)^n}{n \sqrt{n}} \right| = \frac{1}{n^{3/2}} \; \text{ and } \\ \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \; \text{ is convergent.} \end{array}$$

§ 11.6 The Ratio and Root Tests

The (Limit) Ratio Test

For the series $\sum_{n=1}^{\infty} a_n$ $(a_n \neq 0)$,

①
$$0 \le \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1 \implies \sum_{n=1}^{\infty} a_n$$
 is absolutely convergent

$$\text{pf)} \ \ \bigcirc \ \ 0 \leq \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$

$$\exists \, r \, \text{ s.t. } L < r < 1. \, \text{ Since } \left| \frac{a_{n+1}}{a_n} \right| = L \, , \, \, \text{for } \, \, \varepsilon = r - L > 0 \, , \, \, \, \exists \, N \in \mathbb{N} \, \, \, \, \text{s.t.}$$

$$n \geq N \implies \left| \left| \frac{a_{n+1}}{a_n} \right| - L \right| < \varepsilon \implies L - \varepsilon < \left| \frac{a_{n+1}}{a_n} \right| < L + \varepsilon = r \implies \left| a_{n+1} \right| < r \left| a_n \right|.$$

Therefore, for $\forall \, k \in \mathbb{N}, \, \left| \, a_{N \, + \, k} \, \right| < r^k \left| \, a_N \, \right|.$ Since $\sum_{k \, = \, 1}^\infty r^k \left| \, a_N \, \right|$ is convergent, $\sum_{k \, = \, 1}^\infty \left| \, a_{N \, + \, k} \, \right|$

is convergent by the CT. Since N is finite, $\sum_{n=1}^{\infty} |a_n|$ is convergent since $\sum_{n=N+1}^{\infty} |a_n|$ is convergent. \blacksquare

$$\exists \ r \ \text{ s.t. } 1 < r < L \text{ . For } \ \varepsilon = L - r, \ \exists \ N \in \mathbb{N} \ \text{ s.t. } \ n \geq N \ \Rightarrow \ r = L - \varepsilon < \left| \frac{a_{n+1}}{a_n} \right| < L + \varepsilon$$

$$\Rightarrow r |a_n| < |a_{n+1}| \Rightarrow \left| \frac{a_{n+1}}{a_n} \right| > r > 1. \text{ If } L = \infty \text{, then for } M = 1, \quad \exists \, N \in \mathbb{N} \text{ s.t.}$$

$$n \geq N \implies \left|\frac{a_{n+1}}{a_n}\right| > 1 \implies \left|a_{n+1}\right| > \left|a_n\right|. \text{ Since } \lim_{n \to \infty} \left|a_n\right| \neq 0, \ \lim_{n \to \infty} a_n \neq 0 \text{ and } \sum_{n=1}^{\infty} a_n$$

is divergent. ■

$$\begin{split} & < \text{Example} > \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n} \\ & \text{Since } \left| \left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)^3}{3n^3} \right| \rightarrow \frac{1}{3} < 1 \quad \text{as} \quad n \to \infty \,, \quad \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n} \quad \text{is absolutely } \right| \, d^2 + \frac{1}{3} = \frac{1}{3} =$$

$$\begin{split} & \langle \text{Example} \rangle \ \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{n^n}{n!} \\ & \text{Since } \left| \frac{b_{n+1}}{b_n} \right| = \left(1 + \frac{1}{n}\right)^n \ \rightarrow \ e > 1 \ \text{ as } \ n \to \infty \,, \ \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{n^n}{n!} \ \text{is divergent.} \end{split}$$

The (Limit) Root Test

For the series $\sum_{n=1}^{\infty} a_n$ $(a_n \neq 0)$,

①
$$0 \le \lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1 \implies \sum_{n=1}^{\infty} a_n$$
 is absolutely convergent

$$2 \lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 1 \text{ or } L = \infty \implies \sum_{n=1}^{\infty} a_n \text{ is divergent}$$

$$pf) \ \textcircled{1} \ 0 \leq \lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$$

$$\exists \ r \ \text{ s.t. } \ L < r < 1. \ \text{Since } \lim_{n \to \infty} \sqrt[n]{\left|a_n\right|} = L, \ \text{for } \ \varepsilon = r - L > 0, \ \exists \ N \in \mathbb{N} \ \text{ s.t. } \ n \geq N \ \Rightarrow \left|\sqrt[n]{\left|a_n\right|} - L\right| < \varepsilon \ \Rightarrow \ \sqrt[n]{\left|a_n\right|} < L + \varepsilon = r \ \Rightarrow \ 0 \leq \left|a_n\right| < r^n.$$

Since $\sum_{n=N}^{\infty} r^n$ is convergent, $\sum_{n=N}^{\infty} |a_n|$ is convergent by the CT. Thus, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

$$\exists N \in \mathbb{N} \text{ s.t. } n \geq N \Rightarrow \sqrt[n]{|a_n|} > 1 \Rightarrow |a_n| > 1 \Rightarrow \lim_{n \to \infty} |a_n| \neq 0 \text{ and } \lim_{n \to \infty} a_n \neq 0.$$

Therefore, $\sum_{n=1}^{\infty} a_n$ is divergent.

$$\text{\langle Example \rangle } \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2} \right)^n \text{ is convergent since } \lim_{n \to \infty} \frac{2n+3}{3n+2} = \frac{2}{3} < 1.$$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n n!}{(2n)!} = 1 - \frac{2!}{1 \cdot 3} + \frac{3!}{1 \cdot 3 \cdot 5} - \frac{4!}{1 \cdot 3 \cdot 5 \cdot 7} + \cdots \quad \text{(con)}$$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} \text{ (div)}$$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi}{6}\right)}{1+n\sqrt{n}}$$
 (con)

$$\langle \text{Example} \rangle \sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} \ln n}$$
 (div)

$$\mbox{Example> For } b_n > 0 \mbox{ and } \lim_{n \to \infty} b_n = \frac{1}{2}, \ \sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^n b_1 b_2 \cdots b_n} \mbox{ (div)}$$

$$\langle \text{Example} \rangle \sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^2}$$
 (con)

O The Ratio Test

For the series $\sum_{n=1}^{\infty} a_n$ $(a_n \neq 0)$,

①
$$\exists r \in (0, 1), \exists k \in \mathbb{N} \text{ s.t. } \forall n \geq k, \left| \frac{a_{n+1}}{a_n} \right| \leq r \Rightarrow \sum_{n=1}^{\infty} a_n \text{ is absolutely convergent}$$

$$\text{pf)} \ \ \textcircled{1} \quad \forall \ n \geq k, \ \ \left| \frac{a_{n+1}}{a_n} \right| \leq r \ \Leftrightarrow \ \ \left| a_{n+1} \right| \leq r \left| a_n \right|, \ \ \left| a_{k+n} \right| \leq r^n \left| a_k \right| \ \ \text{for} \ \ \forall \ n \in \mathbb{N}.$$

Since $\sum_{n=1}^{\infty} r^n |a_k|$ is convergent, $\sum_{n=1}^{\infty} |a_{k+n}|$ is convergent by the CT and $\sum_{n=1}^{\infty} a_n$ is convergent.

Since $\lim_{n\to\infty} r^n |a_k| = \infty$, $\lim_{n\to\infty} |a_{k+n}| = \infty$ and $\lim_{n\to\infty} |a_n| = \infty$. Therefore, $\lim_{n\to\infty} a_n$ does not exist and $\sum_{n=1}^{\infty} a_n$ is divergent.

For the series $\sum_{n=1}^{\infty} a_n$ $(a_n \neq 0)$,

- ① $\exists r \in (0, 1), \exists k \in \mathbb{N} \text{ s.t. } \forall n \geq k, |a_n|^{\frac{1}{n}} \leq r \Rightarrow \sum_{n=1}^{\infty} a_n \text{ is absolutely convergent}$
- pf) The proof of the convergence of a series $\sum_{n=1}^{\infty}a_n$ is an application of the comparison test. If for all $n\geq N\in\mathbb{N}$, $\left|a_n\right|^{\frac{1}{n}}\leq k<1$, then $\left|a_n\right|\leq k^n<1$. Since the geometric series $\sum_{n=N}^{\infty}k^n$ converges, do does $\sum_{n=N}^{\infty}\left|a_n\right|$ by the comparison test. Hence $\sum_{n=1}^{\infty}a_n$ converges absolutely. If $\left|a_n\right|^{\frac{1}{n}}>1$ for infinitely many n, then a_n fails to converge to 0, hence the series is divergent. \blacksquare

§ 11.8 Power Series

- \bigcirc A power series is of the form $f(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots$ for $c_n \in \mathbb{R}$. Then the domain of the function f is $D(f) = \left\{ x \in \mathbb{R} \;\middle|\; \sum_{n=0}^{\infty} c_n x^n \text{ converges} \right\}$.
- \bigcirc In general, $\sum_{n=0}^{\infty}c_n(x-a)^n=c_0+c_1(x-a)+c_2(x-a)^2+\cdots$ is called a power series in (x-a), a power series centered at a, or a power series about a.

by AST. If x=4, $\sum_{n=1}^{\infty}\frac{1}{n}$ is divergent. Therefore, the interval of convergence is [2,4) and the radius of convergence is R=1.

 $\langle \text{Example} \rangle$ When does $\sum_{n=0}^{\infty} n! x^n$ converge?

sol) Let
$$a_n=n!x^n$$
 then $\left|\frac{a_{n+1}}{a_n}\right|=\left|\frac{(n+1)!x^{n+1}}{n!x^n}\right|=(n+1)|x|\to\infty$ for all $x\neq 0$. Therefore, $I=\{0\}$ and $R=0$.

 $\langle \text{Example} \rangle$ When does $\sum_{n=0}^{\infty} \frac{x^n}{(2n)!}$ converge?

$$\text{sol) Let } a_n = \frac{x^n}{(2n)!} \text{ then } \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{(2n+2)!} \times \frac{(2n)!}{x^n} \right| = \frac{|x|}{(2n+2)(2n+1)}$$

$$\rightarrow 0 < 1 \text{ for } \forall x \in \mathbb{R}. \text{ Therefore, } I = \mathbb{R} \text{ and } R = \infty.$$

<Example> When does $J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$ converge?

sol) Let
$$a_n = \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$
 then $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{2n+2}}{2^{2n+2} (n+1)! (n+1)!} \times \frac{2^{2n} n! n!}{x^{2n}} \right|$
= $\frac{x^2}{(n+1)^2} \to 0 < 1$. Therefore, $I = \mathbb{R}$ and $R = \infty$.

- \bigcirc Thm> For a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$, there are only three possibilities :
 - (i) The series converges only when x = a. (R = 0)
 - (ii) The series converges for $\forall x \in \mathbb{R}$. $(R = \infty)$
 - (iii) There is a positive number R such that the series converges if |x-a| < R and the series diverges if |x-a| > R.

 $\langle \text{Example} \rangle$ When does $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$ converge?

sol) Let
$$a_n = \frac{(-3)^n x^n}{\sqrt{n+1}}$$
 then $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \times \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$

$$= \frac{3\sqrt{n+1}}{\sqrt{n+2}} |x| \longrightarrow 3|x| < 1 \quad \text{if} \quad |x| < \frac{1}{3}. \quad \text{If} \quad x = \frac{1}{3}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}} \quad \text{is}$$

convergent by AST and if $x = -\frac{1}{3}$, $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$ is divergent. Therefore,

$$I = \left(-\frac{1}{3}, \frac{1}{3}\right] \text{ and } R = \frac{1}{3}.$$

$$\langle \text{Example} \rangle$$
 When does $\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$ converge?

sol) Let
$$a_n = \frac{n(x+2)^n}{3^{n+1}}$$
 then $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+1)(x+2)^{n+1}}{3^{n+2}} \times \frac{3^{n+1}}{n(x+2)^n}\right|$ $= \frac{n+1}{3n} |x+2| \to \frac{1}{3} |x+2| < 1$ if $|x+2| < 3$. If $x = -5$, $\sum_{n=0}^{\infty} \frac{(-1)^n n}{3}$ is divergent and if $x = 1$, $\sum_{n=0}^{\infty} \frac{n}{3}$ is divergent. Therefore, $I = (-5, 1)$ and

 $\langle \text{Example} \rangle$ Find the interval of convergence and radius of convergence for series $\sum_{n=2}^{\infty} \frac{5^n}{n} x^n, \sum_{n=1}^{\infty} \frac{x^n}{n^4 4^n}, \sum_{n=1}^{\infty} 2^n n^2 x^n, \sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln n}$

(Ans)
$$R_1 = \frac{1}{5}$$
, $I_1 = \left[-\frac{1}{5}, \frac{1}{5} \right]$, $R_2 = 4$, $I_2 = (-4, 4]$, $R_3 = \frac{1}{2}$, $I_3 = \left(-\frac{1}{2}, \frac{1}{2} \right)$, $R_4 = 2$, $I_4 = [-4, 0)$

§ 11.9 Representations of Functions as Power Series

$$\frac{1}{1-x}=1+x+x^2+x^3+\cdots=\sum_{n=0}^{\infty}x^n \ (|x|<1): \text{A power series representation of } \frac{1}{1-x}$$
 on the interval $(-1,1)$

$$\langle \text{Example} \rangle \ \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \ |x| < 1$$

$$\begin{split} \text{\langle Example \rangle} \ \ \frac{x^3}{x+2} = \frac{x^3}{2} \times \frac{1}{1 - \left(-\frac{x}{2}\right)} = \frac{x^3}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+3}}{2^{n+1}}, \ \ |x| < 2 \end{split}$$

- O Differentiation and Integration of Power Series

(i)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \cdots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$
 and $R' = R$.

(ii)
$$\int f(x)dx = C + c_0(x-a) + \frac{c_1}{2}(x-a)^2 + \frac{c_2}{3}(x-a)^3 + \cdots$$
$$= C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1} \text{ and } R' = R.$$

$$\begin{split} \text{\langle Example \rangle Let } f(x) &= \sum_{n=1}^{\infty} \frac{x^n}{n^2} \text{ and } a_n = \frac{x^n}{n^2}. \\ \text{Since } \left| \frac{a_{n+1}}{a_n} \right| &= \left| \frac{x^{n+1}}{(n+1)^2} \times \frac{n^2}{x^n} \right| = \frac{n^2}{(n+1)^2} |x| \ \to \ |x| < 1 \text{ when } |x| < 1, \\ R &= 1. \text{ When } x = \pm 1, \ \sum_{n=1}^{\infty} \left| \frac{(\pm 1)^n}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is convergent and } I = [-1, 1]. \end{split}$$

Also,
$$f'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n}$$
 and let $b_n = \frac{x^{n-1}}{n}$ then
$$\left|\frac{b_{n+1}}{b_n}\right| = \left|\frac{x^n}{n+1} \times \frac{n}{x^{n-1}}\right| = \frac{n}{n+1}|x| \rightarrow |x| < 1 \text{ when } |x| < 1, \quad R = 1.$$
 When $x = 1$, $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent but when $x = -1$, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is convergent by AST. Therefore, $I = [-1, 1)$.

 $\langle \text{Example} \rangle$ Derive the power series expression for $\frac{1}{(1-x)^2}$.

sol) Since
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n \ (|x| < 1),$$

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots = \sum_{n=1}^{\infty} nx^{n-1} \ (|x| < 1).$$

$$\begin{array}{lll} \text{\langle Example \rangle} & \frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-1)^n x^n & (|x|<1). & \text{By integrating both sides, we} \\ & \text{obtain } \ln(1+x) = C + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots , \ |x|<1. & \text{When } x=0, \ C=0. \\ & \text{Therefore, } \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \ (|x|<1). \\ \end{array}$$

 $\langle \text{Example} \rangle$ Derive the power series expression for $\tan^{-1}x$.

sol) Since
$$(\tan^{-1}x)' = \frac{1}{1+x^2}$$
, $\tan^{-1}x = \int \frac{1}{1+x^2} dx$
 $= C + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$ and $C = 0$ when $x = 0$. Therefore, $\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$. Let $a_n = (-1)^n \frac{x^{2n+1}}{2n+1}$ then

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{2n+3}}{2n+3} \times \frac{2n+1}{x^{2n+1}} \right| = \frac{2n+1}{2n+3} |x|^2 \rightarrow |x|^2 < 1 \text{ when } |x| < 1 \text{ and } R = 1.$$

$$\int \frac{1}{1+x^7} dx = \int \frac{1}{1-(-x^7)} dx = \int (1-x^7+x^{14}-x^{21}+\cdots) dx$$

$$= C + x - \frac{x^8}{8} + \frac{x^{15}}{15} - \frac{x^{22}}{22} + \cdots$$

§ 11.10 Taylor and Mclaurin Series

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots \;, \; |x-a| < R \,.$$
 Since $f(a) = c_0$, $f'(a) = c_1$, $f''(a) = 2!c_2$, \cdots , $f^{(n)}(a) = n!c_n$ and
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \; \text{ and this is called the Taylor series of the function } f \; \text{ at } a \text{, about } a \text{, or centered at } a \text{.}$$

Especially when a=0, $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ is called the Mclaurin series of function f.

Not all functions can be expressed by power series, and some are even different from its Taylor series.

$$\langle \text{Example} \rangle \ \frac{1}{1-x} \, = \, 1 + x + x^2 + x^3 + \ \cdots \ = \sum_{n \, = \, 0}^{\infty} x^n, \ |\, x\,| \, < \, 1$$

$$\begin{array}{l} \text{\langle Example \rangle} \ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \\ = \sum\limits_{n=0}^{\infty} \frac{x^n}{n!}, \ \text{let} \ \ a_n = \frac{x^n}{n!} \ \text{then} \\ \\ \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \times \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \\ \to 0 \quad \text{for} \quad \forall \, x \neq 0, \quad \text{and} \quad \text{the series} \\ \\ \text{converges when} \ \ x = 0. \ \text{Therefore,} \ \sum\limits_{n=0}^{\infty} \frac{x^n}{n!} \ \text{converges for} \ \ \forall \, x \in \mathbb{R} \ \text{and} \ \ R = \infty. \end{array}$$

(Q) Under what circumstances is a function equal to the sum of its Taylor series?

$$\Leftrightarrow$$
 When can we say that $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$?

sol) Define
$$T_n(x)$$
 as $T_n(x)=\sum_{k=0}^n\frac{f^{(k)}(a)}{k!}(x-a)^k$ which is the n th-degree Taylor polynomial of f at a . Now $\sum_{n=0}^\infty\frac{f^{(n)}(a)}{n!}(x-a)^n=\lim_{n\to\infty}T_n(x)$. Let $R_n(x)=f(x)-T_n(x)$, then $f(x)=T_n(x)+R_n(x)$ and if $\lim_{n\to\infty}R_n(x)=0$, then $\lim_{n\to\infty}T_n(x)=\lim_{n\to\infty}[f(x)-R_n(x)]=f(x)$.

- Thm> If f(x) = T_n(x) + R_n(x), where T_n(x) is the nth-degree Taylor polynomial of f at a, and lim_{n→∞} R_n(x) = 0 for |x-a| < R, then f is equal to the sum of its Taylor series on the interval |x-a| < R.
 </p>
- \bigcirc Taylor's Inequality If $\left|f^{(n+1)}(x)\right| < M$ for $|x-a| \le d$, then $\left|R_n(x)\right| \le \frac{M}{(n+1)!} |x-a|^{n+1}$ for $|x-a| \le d$.

$$\bigcirc$$
 Note
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} \text{ converges for } \forall x \in \mathbb{R} \Rightarrow \lim_{n \to \infty} \frac{x^n}{n!} = 0, \ \forall x \in \mathbb{R}$$

$$f(x) = e^x$$
, $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, let $a_n = \frac{x^n}{n!}$ then

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \times \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0 < 1, \ \left| f^{(n+1)}(x) \right| \le e^d, \ |x| \le d$$

By Taylor's Inequality,
$$|R_n(x)| \le \frac{e^d}{(n+1)!} |x|^{n+1} \to 0$$

$$\Rightarrow \lim_{n \to \infty} R_n(x) = 0, |x| \le d \text{ and } \forall x \in \mathbb{R}, e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

O Taylor's Theorem

Suppose that the derivatives $f^{(k)}$ for $k=0,1,2,\cdots,n$ are continuous on [a,b] and that $f^{(n+1)}$ exists on (a,b). Let $x_0\in [a,b]$. Then for each $x\in [a,b]$,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x)}{n!}(x - x_0)^n + R_n(x)$$

and
$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1}$$
 for some c between x and x_0 .

$$\langle \text{Example} \rangle$$
 If $a=2$, then $e^x=\sum_{n=0}^{\infty}\frac{e^2}{n!}(x-2)^n$.

\(
 \text{Example} \)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
 $\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \cdots = \sum_{n=1}^{\infty} \frac{U_{2n+1}x^{2n+1}}{(2n+1)!}$
 $= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!} \quad (|x| < \frac{\pi}{2})$

$$\begin{split} \text{\langle Example \rangle If } & \ a = \frac{\pi}{3}, \text{ then } \sin x = \sum_{n=0}^{\infty} (\sqrt{3})^{a_n} (-1)^{b_n} \frac{1}{2n!} \Big(x - \frac{\pi}{3} \Big)^n \\ & \ (a_n = \frac{1 + (-1)^n}{2}, \ b_n = \frac{1}{2} - \frac{i^n}{2i^{\frac{1 - (-1)^n}{2}}}) \end{split}$$

$$\bigcirc f(x) = (1+x)^k, \ k \in \mathbb{R}$$

$$f'(x) = k(1+x)^{k-1}, \ f''(x) = k(k-1)(1+x)^{k-2}, \ f^{(n)}(x) = k(k-1)\cdots(k-n+1)x^{k-n}$$

$$f'(0) = k, \ f''(0) = k(k-1), \ \cdots, \ f^{(n)}(0) = k(k-1)\cdots(k-n+1)$$

Therefore, the Mclaurin series of $f(x) = (1+x)^k$ is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{k(k-1)\cdots(k-n+1)}{n!} x^n = \sum_{n=0}^{\infty} \binom{k}{n} x^n, \text{ and } x^n = \sum_{n=0}^{\infty} \binom{k}{n} x^n = \sum_{n=0}^{\infty} \binom{k}{n} x^n, \text{ and } x^n = \sum_{n=0}^{\infty} \binom{k}{n} x^n = \sum_{n=0}^{\infty} \binom{k}{n} x^n$$

 $(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n$ for |x| < 1 (though it is difficult to prove).

$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \cdots$$

$$\begin{split} \langle \text{Example} \rangle \ f(x) &= \frac{1}{\sqrt{4-x}} = \frac{1}{2} \frac{1}{\sqrt{1-\frac{x}{4}}} = \frac{1}{2} \left(1-\frac{x}{4}\right)^{-\frac{1}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} {\binom{-1/2}{n}} \left(-\frac{x}{4}\right)^n \\ &= \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n (-1)^n 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1) x^n}{n! 2^n 4^n} \\ &= \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2^n C_n}{2^{4n+1}} x_n \ \left|-\frac{x}{4}\right| < 1, \ |x| < 4. \end{split}$$

$$\langle \text{Example} \rangle \ f(x) = x \cos x = x \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}, \ R = \infty.$$

$$\langle \text{Example} \rangle \ f(x) = \ln{(1+3x^2)} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(3x^2)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}3^nx^{2n}}{n}, \ |x| < \frac{1}{\sqrt{3}}.$$

$$\begin{split} \text{\langle Example \rangle} & \int_0^1 e^{-x^2} dx = \int_0^1 \sum_{n=0}^\infty \frac{(-x^2)^n}{n!} dx = \int_0^1 \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{n!} dx \\ & = \left[\sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)n!} \right]_0^1 = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)n!} = \frac{1}{2} - \frac{1}{1! \times 3} + \frac{1}{2! \times 5} - \frac{1}{3! \times 7} + \cdots \end{split}$$

$$\langle \text{Example} \rangle \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{1}{x^2} \left(\frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \right) = \frac{1}{2}$$

$$\langle \text{Example} \rangle \ e^x \sin x = \left[\sum_{n=0}^{\infty} \frac{x^n}{n!} \right] \left[\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right]$$

$$\langle \text{Example} \rangle \ \tan x = \frac{\sin x}{\cos x} = \left[\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right] \left[\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \right]^{-1}$$