EBS FINAL 기하 선별 19제 by 파급효과

문제의 저작권은 EBS에게 있습니다.

기하 수능특강 p12 3번

[22012-0017]

3 그림과 같이 원 $(x-2)^2+(y-5)^2=4$ 위의 점 P와 초점이 F인 포물선 $x^2=6y$ 위의 점 Q에 대하여 $\overline{PQ}+\overline{FQ}$ 의 최솟값은?

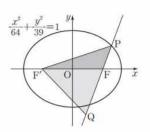
① $\frac{9}{2}$

 $4\frac{21}{4}$

- $2\frac{19}{4}$

3 5

 $\begin{array}{c|c}
 & (x-2)^2 + (y-5)^2 = 4 \\
 & x^2 = 6y \\
\hline
 & Q \\
\hline
 & X
\end{array}$


문제 Comment

아주 기본적인 문제이지만 PQ를 두 개의 길이로 쪼개는 벡터의 아이디어를 엿볼 수 있는 문제라서 이 문제를 통해 하나의 길이를 한쪽으로만 보는게 아니고 두 개 이상의 길이로 쪼개서 볼 수 있는 아이디어를 잘 숙지하라는 차원에서 선정하였습니다.

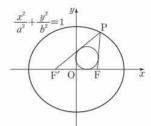
기하 수능특강 p26 1번

[22012-0046]

그림과 같이 두 초점이 F, F'인 타원 $\frac{x^2}{64} + \frac{y^2}{39} = 1$ 위에 점 P가 있다. 두 점 P, F를 지나는 직선 위의 점 Q에 대하여 삼각형 PF'F와 삼각형 QFF'의 넓이를 각각 S_1 , S_2 라 하자. $\overline{PF'} = \overline{PQ}$ 이고 S_1 : $S_2 = 1$: 2일 때, $S_1 + S_2$ 의 값은? (단, 점 F의 x좌표는 점 F'의 x좌표보다 크고, 점 P는 제1사분면에 있고 점 Q는 제4사분면에 있다.)

- ① 9√35
- 2 9√37
- ③ 9√39

- $4 10\sqrt{37}$
- ⑤ 10√39

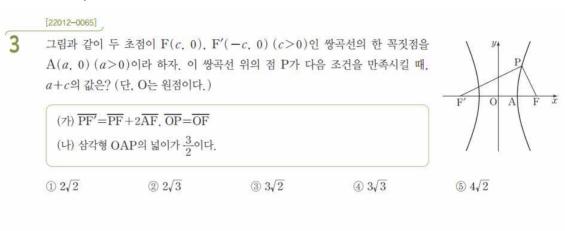

문제 Comment

본격적인 계산 전에 길이 동일 조건과 비율을 통해 구하는 길이의 수식을 간단하게 줄이는 과정이 숨겨져 있어서 선정했습니다.

기하 수능특강 p26 2번

[22012-0047]

그림과 같이 두 초점이 F(4, 0), F'(-4, 0)인 타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>0, b>0)위에 점 P가 있다. $\overline{PF} = 7$ 이고 삼각형 \overline{PF} 에 내접하는 원의 중심의 \overline{x} 좌표가 2일 때, $\overline{a^2} + b^2$ 의 값은? (단, 점 P는 제1사분면에 있다.)


- 142
- 2 144
- ③ 146

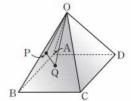
- 4 148
- ⑤ 150

문제 Comment

어려운 문제는 아니지만 중학교 도형지식인 내심의 개념을 이용하여 간단하게 풀리는 문제라 선정했습니다.

기하 수능특강 p36 3번

문제 Comment


쌍곡선과 원의 아이디어를 매끄럽게 잘 이은 문제입니다. 상당히 좋은 문제라 선정했습니다.

기하 수능특강 p81 7번

[22012-0149]

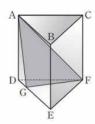
7

그림과 같이 모든 모서리의 길이가 6인 정사각뿔 O-ABCD에서 두 삼각형 OAB, OBC의 무게중심을 각각 P, Q라 하자. 삼각형 OPQ의 평면 ABCD 위로 의 정사영의 넓이는?

- 1
- ② $\frac{3}{2}$
- 3 2

- $4\frac{5}{2}$
- **(5)** 3

문제 Comment


PQ를 연장하여 같은 평면 위에 있는 더 큰 삼각형에서 비율식으로도 충분히 정사영을 생각해 풀 수 있는 문제라 선정했습니다.

기하 수능특강 p83 4번

[22012-0153]

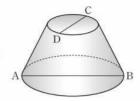
4

그림과 같이 모든 모서리의 길이가 4인 삼각기둥 ABC-DEF가 있다. 선분 DE를 1:3으로 내분하는 점을 G라 하고, 평면 AGF와 삼각기둥 ABC-DEF의 세 개의 옆면이 이루는 예각의 크기를 각각 $\theta_1,\;\theta_2,\;\theta_3$ 이라 할 때, $\frac{\cos\theta_j}{\cos\theta_i}$ 의 최댓값은?

. (단, i, j는 모두 1 이상 3 이하인 자연수이다.)

- ① $\frac{7}{6}$
- $2\frac{7}{5}$
- $3\frac{7}{4}$

- $4\frac{7}{3}$
- $(5) \frac{7}{2}$


문제 Comment

계산을 적게 하고도 충분히 정사영의 판단만으로 풀 수 있는 풀이가 존재하여 선정했습니다.

기하 수능특강 p83 6번

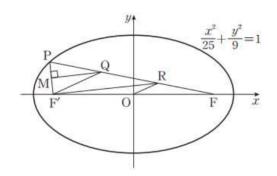
[22012-0155]

6 그림과 같이 한 밑면은 길이가 4인 선분 AB를 지름으로 하는 원이고 다른 한 밑면은 길이가 2인 선분 CD를 지름으로 하는 원이며 높이는 2인 원뿔대가 있다. 두 직선 AB, CD가 이루는 예각의 크기가 60°일 때, 삼각형 BCD의 외접원의 평면 ACD 위로의 정사영의 넓이는?

- ① $\frac{\pi}{4}$
- ② $\frac{2}{7}\pi$
- $3\frac{9}{28}\pi$

- $4 \frac{5}{14} \pi$
- $\odot \frac{11}{28}\pi$

문제 Comment

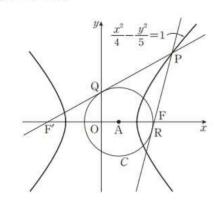

난이도가 상당합니다. 공간지각능력을 직접 요구하기도 하고 그림으로 풀려해도 꽤나 논리적인 과정을 많이 밟아야 해서 선정했습니다.

기하 수능완성 p80 8번

08

22056-0194

그림과 같이 두 초점이 F(c, 0), F'(-c, 0) (c>0)인 타원 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 위의 점 중 제2사분면에 있고 x좌표가 -c보다 작은 점 P가 있다. 선분 F'P의 중점을 M이라 하고, 점 M을 지나고 선분 F'P에 수직인 직선이 선분 FP와 만나는 점을 Q라하자. 점 F'을 지나고 직선 QM에 평행한 직선이 선분 FP와 만나는 점을 R라 하자. 직선 F'Q와 직선 F'Q와 직선 F'Q와 직선 F'



문제 Comment

코사인법칙과 타원의 성질을 같이 쓰는 문항입니다. 평행조건, 닮음비 등등 중학교 도형 지식의 활용과 타원의 정의를 잇는 생각이 중요하여 선정했습니다. 기하 수능완성 p81 10번

22056-019

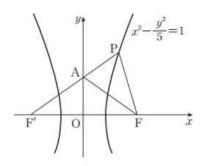
그림과 같이 두 초점이 F, F'인 쌍곡선 $\frac{x^2}{4}-\frac{y^2}{5}=1$ 위의 제1 사분면에 점 P가 있다. 중심이 A(1,0)인 원 C가 직선 F'P와 점 Q에서 접하고, 직선 FP와 점 R에서 접할 때, $\overline{F'Q}+\overline{FR}$ 의 값은? (단, $\overline{F'P}>\overline{FP}$)

- 1 4
- $2\frac{17}{4}$
- $3\frac{9}{2}$

- $4 \frac{19}{4}$
- **⑤** 5

문제 Comment

쌍곡선의 정의에 충실하게 잘 낸 문항입니다. 난이도도 은근 있지만 학생들이 능숙하게 풀 때까지 연습할 필요가 있어 선정했습니다.


기하 수능완성 p81 11번

▶ 22056-019

두 초점이 F, F'인 쌍곡선 $x^2 - \frac{y^2}{5} = 1$ 위의 점 P에 대하여 직선 PF'이 y축과 만나는 점을 A라 하자. $\overline{FA} = \overline{FP}$ 일 때, $\overline{F'P} + \overline{FP}$ 의 값은? (단, $\overline{F'P} > \overline{FP}$)

- 1)8
- 29
- ③ 10

- 4) 11
- ⑤ 12

문제 Comment

수선을 내리는 아이디어가 다소 기발하여 선정했습니다. 유사 문항으로 2018학년도 9월 평가원 27번 (가형)이 있습니다.

기하 수능완성 p98 25번

25 ▶ 22056-0238

좌표평면에서 원 $x^2+y^2=1$ 위의 두 점 P, Q에 대하여 $\overrightarrow{PQ} = \sqrt{2}$ 이다. 점 R(2, 3)에 대하여 $\overrightarrow{RP} \cdot \overrightarrow{RQ}$ 의 최댓값을 M, 최솟값을 m이라 할 때, $M \times m$ 의 값은?

- ① 141
- ② 142
- ③ 143
- **4** 144 **5** 145

문제 Comment

 $OP \perp OQ$ 임을 이용하여 최소한의 식으로 푸는 것이 중요하여 선정했습니다.

기하 수능완성 p99 29번

▶ 22056-0242

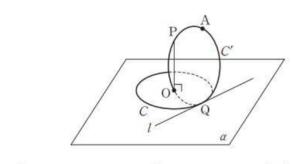
좌표평면 위의 두 점 A(-2, 3), B(5, 12)에 대하여 점 P와 도형 D가 다음 조건을 만족시킨다.

- (7) $|\overrightarrow{OP} + \overrightarrow{AP} + \overrightarrow{BP}| = 9$
- (나) 도형 D 위의 임의의 두 점 Q, R에 대하여 $\overrightarrow{OB} \cdot (\overrightarrow{OQ} \overrightarrow{OR}) = 0$

점 P가 나타내는 도형의 넓이를 도형 D가 이등분할 때, 원점 O와 도형 D 사이의 거리는?

- 1 1
- 22
- 3 3

- 4 4
- 5 5


문제 Comment

(7) 조건에서 $\triangle OAB의$ 무게중심을 떠올리는 것이 중요하여 선정했습니다.

기하 수능완성 p106 12번

≥ 22056-0254

그림과 같이 점 P에서 평면 α 에 내린 수선의 발을 O라 할 때, \overline{OP} =4이다. 점 O를 중심으로 하고 반지름의 길이가 3인 평면 α 위의 원 C 위의 점 Q에서 원 C와 접하는 평면 α 위의 직선을 l이라 하자. 세 점 O, P, Q를 지나는 원 C' 위의 점 A에 대하여 점 A에서 평면 α 까지의 거리가 최대일 때, 직선 l과 점 P를 포함하는 평면과 직선 l과 점 A를 포함하는 평면이 이루는 예각의 크기를 θ 라 하자. $\cos\theta$ 의 값은?

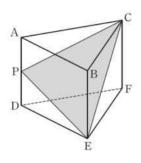
- $\bigcirc \frac{\sqrt{3}}{2}$
- $2\sqrt{5}$
- $3\frac{\sqrt{85}}{10}$

- $4\frac{3\sqrt{10}}{10}$
- $\sqrt{95}$

문제 Comment

2018년 10월 교육청 (가형) 29번과 유사 문항입니다. 삼수선의 정리에 대한 이해가 된 상태에서 각 변의 길이를 구하고 각의 크기도 생각하는 문제라 초고난도 문항이라고 봐도 될 듯합니다. 수완 문항 중에 제일 어려운 듯합니다.

기하 수능완성 p125 30번


30

▶ 22056-1030

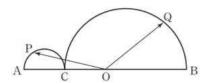
그림과 같이 모든 모서리의 길이가 같은 삼각기둥 ABC-DEF에서 모서리 AD 위의 한 점을 P라 할 때, 다음 조건을 만족시킨다.

- (가) 삼각형 CPE의 평면 ADEB 위로의 정사영의 넓이는 정사각형 ADEB의 넓이의 $\frac{3}{8}$ 배이다.
- (나) 삼각형 CPE의 넓이는 $4\sqrt{6}$ 이다.

삼각형 ABC의 평면 CPE 위로의 정사영의 넓이를 S라 할 때, S^2 의 값을 구하시오. [4점]

문제 Comment

정사영과 공간도형의 단면화를 적절히 활용하는 문항이라 선정했습니다.


기하 수능완성 p137 30번

30

▶ 22056-1060

그림과 같이 길이가 8인 선분 AB를 1:3으로 내분하는 점을 C라 하고, 선분 AB의 중점을 O라 하자. 두 선분 AC, CB를 지름으로 하는 두 반원을 선분 AB를 기준으로 각각 같은 쪽에 그리고, 호 AC 위의 점 P와 호 CB 위의 점 Q를 $|\overrightarrow{OP} + \overrightarrow{OQ}| = 4$ 를 만족시키도록 잡는다. $|\overrightarrow{OQ}|$ 의 값이 최대일 때, 점 Q를 Q_1 , 점 Q를 Q_1 이라 하자. $|\overrightarrow{OP}_1 + \overrightarrow{OQ}_1|$ $\cdot \overrightarrow{OQ}_1$ 의 값을 구하시오.

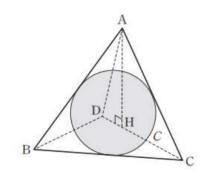
[4점]

문제 Comment

2017학년도 6월 평가원 (가형) 28번 문항 변형 버전이라 선정했습니다. 해당 기출은 당시 난이도가 제법 있는 문항이라 지금도 유효한 문항입니다.

기하 수능완성 p149 30번

30


▶ 22056-1090

 $\overline{AB}=\overline{BC}=\overline{CA}=6$ 인 사면체 ABCD가 있다. 삼각형 ABC에 내접하는 원을 C라 하고, 점 A에서 평면 BCD에 내린 수선의 발을 H라 할 때, 원 C와 점 H가 다음 조건을 만족시킨다.

(가) 원 C의 평면 BCD 위로의 정사영의 넓이는 $\sqrt{3}\pi$ 이다.

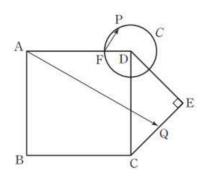
(나) 점 H는 선분 CD를 3: 1로 내분한다.

평면 ABD와 평면 BCD가 이루는 각의 크기를 θ 라 할 때, $\tan^2 \theta$ 의 값을 구하시오. [4점]

문제 Comment

정사영과 이면각의 관계를 잘 물어본 문항이고, 삼수선 정리도 깔끔하게 쓰고 단면화도 잘 해야 해서 선정했습니다.

기하 수능완성 p161 29번


29

초점이 F인 포물선 $y^2=4x$ 와 쌍곡선의 일부분인 곡선 $C: \frac{x^2}{4} - \frac{y^2}{5} = 1 \; (x<0)$ 이 있다. 점 A(-3, 0)에서 포물선 $y^2=4x$ 에 그은 접선의 한 접점 P에 대하여 곡선 C 위의 점 Q가 $\overline{AQ} = \frac{1}{2}$ 을 만족시킬 때, $\overline{FQ}^2 = \frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

문제 Comment 쌍곡선 연습문제로 제법 괜찮은 문항이라 선정했습니다. 기하 수능완성 p172 28번

28

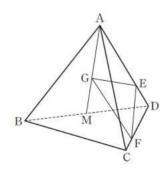
평면에 그림과 같이 한 변의 길이가 4인 정사각형 \overline{ABCD} 가 있다. 이 정사각형의 외부에 $\angle DEC = 90^\circ$, $\overline{CE} = \overline{DE}$ 를 만족시키는 점 \overline{E} 를 잡고, 변 \overline{AD} 를 3:1로 내분하는 점을 \overline{F} , 점 \overline{D} 를 중심으로 하고 반지름의 길이가 1인 원을 \overline{C} 라 하자. 원 \overline{C} 위의점 \overline{P} 와 선분 \overline{CE} 위의 점 \overline{Q} 에 대하여 $|\overline{FP} - \overline{AQ}|$ 의 최댓값과 최솟값을 각각 \overline{M} , \overline{M} 이라 할 때, $(\overline{M} - 1)^2 + (\overline{M} + 1)^2$ 의 값은? [4점]

- ① $\frac{105}{2}$
- 2 53
- $3\frac{107}{2}$

- ④ 54
- (5) $\frac{109}{2}$

문제 Comment

벡터의 분해를 잘 이해하고 있어야 풀 수 있는 문항이라 선정했습니다.


기하 수능완성 p173 30번

30

▶ 22056-1150

그림과 같이 한 모서리의 길이가 8인 정사면체 ABCD에서 선분 AD를 3:1로 내분하는 점을 E, 선분 CD를 1:3으로 내분하는 점을 F, 선분 BD의 중점을 M이라 하고, 선분 AM을 3:2로 내분하는 점을 G라 하자. 삼각형 ABC의 평면 EFG 위로의 정사영의 넓이는 $\frac{q}{p}\sqrt{19}$ 이다. p+q의 값을 구하시오.

(단, p와 q는 서로소인 자연수이다.) [4점]

문제 Comment

문제의 기본 틀은 171129(가형)을 들고 왔고, 이면각을 잘 잡아야 하는 문항이라 선정했습니다.

페이지	답	페이지	답	페이지	답	페이지	답	페이지	답
1	표지	11	1	21	답지				
2	1	12	3						
3	3	13	5						
4	3	14	4						
5	3	15	24						
6	3	16	8						
7	5	17	10						
8	5	18	55						
9	136	19	3						
10	1	20	137						

EBS는 이 자료에 있는 문제만 푼다면
23학년도 수학 선택과목 기하 EBS 연계 대비로 충분합니다.
을 한해도 수고 많으셨습니다.
내년에는 멋진 대학생활을 하셨으면 합니다.
저도 올해보다 더욱 나은 내년이 되도록 노력하겠습니다.
-파급효과 올림-