2022 THE CODE BREAKER PLUS ${ }^{+}$PACK 문제지

제4교시 과핟탐구 영역(생명과학II)

성명 \quad 수험번호 $\quad|\quad| \quad|\quad| \quad$ 제()선택

CODE \#1. - Base Composition Calculation

1. 표는 100 개의 염기쌍으로 이루어진 어떤 이중 나선 DNA의 각 가닥 I 과 Π 에 대한 염기 조성과, 이 두 가닥 중 한 가닥으로부터 정상적으로 전사된 mRNA 가닥의 염기 조성을 나타낸 것이다.
이 이중 나선 DNA 에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}=\frac{2}{3}$ 이다.

구분		염기 조성(개)					
		A	G	T	C	U	계
DNA	I	?	?	17	?	?	100
	II	?	27	?	?	?	100
mRNA		?	(7)	?	?	17	100

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 주형으로 사용된 DNA 가닥의 모든 염기가 mRNA로 전사되었다.) [140619]
<보 기>
ㄱ. (ㄱ)은 33 이다.
ㄴ. mRNA가 만들어질 때 주형으로 사용된 DNA 가닥은 I 이다. ㄷ. I 에서 퓨린 계열의 염기는 56 개이다.
2. 그림 (가)는 가닥 I 과 ㅍㄹㅗ 구성된 어떤 이중 가닥 DNA를, (나)는 (가)로부터 전사된 mRNA를 나타낸 것이다. 가닥 I 에서 염기 $\mathrm{A}+\mathrm{T}$ 의 함량은 80% 이다.

(가)

(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [141114]

<보 기>

ㄱ. (가)에서 퓨린 계열의 염기 함량은 50% 이다.
ㄴ. (가)에서 (나)로 전사될 때의 DNA 주형 가닥은 ㅍ이다.
ㄷ. DNA 가닥 Π 에서 염기 $\mathrm{G}+\mathrm{C}$ 의 함량은 80% 이다.
3. 표는 어떤 동물 I 과 ㅍ, 메뚜기, 누룩곰팡이의 세포 내 핵 DNA 의 염기 조성 비율을 나타낸 것이다.

구분	염기 조성 비율(\%)				A+T
	A	T	G	C	
동물 I 의 간	28	28	22	22	$?$
동물 ■ 의 간	$?$	(7)	()	(ㄷ)	$?$
동물 П의 신장	30	$?$	$?$	$?$	1.5
메뚜기	$?$	$?$	$?$	$?$	1.4
누룩곰팡이	25	25	25	25	1.0

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [150604]

<보 기>

ㄱ. (ㄱ)은 28 , (ㄴ)은 22 , (ㄷ)은 22 이다.
ㄴ. 메뚜기에서 퓨린 계열 염기와 피리미딘 계열 염기의 비는 $1: 1.4$ 이다.
ㄷ. $\frac{3 \text { 개의 수소 결합을 하는 염기쌍의 수 }}{\text { 전체 염기쌍의 수 }}$ 값은 누룩곰팡이 에서가 동물 Π 의 신장 세포에서보다 크다.
4. 그림은 대장균의 DNA X 가 복제되는 과정을 모식적으로 나타낸 것이다. 그림에서 Y 는 X 가 50% 복제되었을 때의 DNA 이다. 표는 Y 의 특성을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 지연 가닥과 선도 가닥의 복제된 길이는 동일하다.)
[151110]

<보 기>

ㄱ. X 를 구성하는 뉴클레오타이드는 1600 개이다.
ㄴ. 복제 과정에서 에너지가 사용된다.
ㄷ. X 에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}$ 는 1.5 이다.
5. 다음은 DNA X, DNA Y, mRNA Z에 대한 자료이다.

- 이중 가닥 DNA X와 Y는 각각 300 개의 염기쌍으로 이루 어져 있다.
$\circ \mathrm{X}$ 와 Y 중 하나로부터 Z 가 전사되었고, Z 는 300 개의 염기로 이루어져 있다.
$\circ \mathrm{X}$ 는 단일 가닥 X_{1} 과 X_{2} 로, Y 는 단일 가닥 Y_{1} 과 Y_{2} 로 이루 어져 있다.
○ X 에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}=\frac{3}{2}$ 이고, Y 에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}=\frac{3}{7}$ 이다.
$\circ \mathrm{X}_{1}$ 에서 구아닌 (G) 의 비율은 16% 이고, 피리미딘 염기의 비율은 52% 이다.
- Y_{1} 에서 사이토신 (C) 의 비율은 30% 이다.
$\circ \mathrm{Y}_{2}$ 에서 아데닌(A)의 비율은 12% 이다.
$\circ \mathrm{Z}$ 에서 G 의 비율은 16% 이다.
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [171112]
<보 기>
ㄱ. Z 가 만들어질 때 주형으로 사용된 DNA 가닥은 X_{1} 이다.
ㄴ. 염기 간 수소 결합의 총개수는 X 가 Y 보다 90 개 적다.
ㄷ. X_{1} 의 G 개수 $+\mathrm{X}_{2}$ 의 A 개수 $+\mathrm{Y}_{2}$ 의 C 개수 $=252$ 개이다.

6. 다음은 어떤 세포에서 일어나는 DNA X의 복제에 대한 자료이다.

○ 그림 (가)는 DNA X를, (나)는 X가 복제되는 과정의 일부를 나타낸 것이다.
○ (나)에서 염기의 개수는 1600 개이고, 그중 유라실 (U) 의 개수는 5 개이다. (ㄱ)~()은 새로 합성된 가닥이다.
○ (a) (나)에서 복제되지 않은 부분의 염기 개수는 X 의 염기 개수의 40% 이다.
○ (나)에서 (ㄱ)의 염기 개수와 (ㄴ)의 염기 개수의 합은 (ㄷ)의 염기 개수와 같으며, (ㄷ)의 $\mathrm{G}+\mathrm{C}$ 함량은 40% 이고, (a)의 $\mathrm{G}+\mathrm{C}$ 함량은 60% 이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [180914]
-<보 기>
ㄱ. (가)에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}=\frac{13}{12}$ 이다.
ㄴ. (나)에서 타이민(T)의 개수는 435 개이다.
ㄷ. (ㄴ)이 (ㄱ)보다 먼저 합성되었다.
7. 다음은 어떤 세포에서 일어나는 DNA X의 복제에 대한 자료이다.

- 그림 (가)는 이중 가닥 DNA X를, (나)는 X 가 복제되는 과정의 일부를 나타낸 것이다.
○ (나)는 (ㄱ) 복제된 부분과 (ㄴ)복제되지 않은 부분을 나타낸 것이며, (ㄱ)은 새로 합성된 가닥과 그에 대한 상보적인 주형 가닥을 포함한다.
- (ㄱ)에서 새로 합성된 가닥의 $\mathrm{G}+\mathrm{C}$ 함량은 40% 이다.
- (ㄴ)의 염기 개수는 X의 염기 개수의 40% 이다.
(ㄴ)에서 $\mathrm{A}+\mathrm{T}$ 함량은 60% 이다.
- (ㄴ)에서 구아닌 (G) 의 개수는 180 개이다

(가)
(나)
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [210913]
-<보 기>
ㄱ. X 에서 $\mathrm{G}+\mathrm{C}$ 함량은 40% 이다.
ㄴ. (ㄱ)의 염기 개수는 2700 개이다.
ㄷ. (ㄴ)에서 사이토신(C) 개수 + 타이민 (T) 개수 $=450$ 개이다.

8. 다음은 $\mathrm{DNA} \mathrm{X}, \mathrm{DNA} \mathrm{Y}, \mathrm{mRNA} Z$ 에 대한 자료이다

- 이중 가닥 DNA X는 서로 상보적인 단일 가닥 X_{1} 과 X_{2} 로 이중 가닥 DNA Y는 서로 상보적인 단일 가닥 Y 과 Y_{2} 로 구성되어 있다. X 와 Y 의 염기 개수는 같다.
- X와 Y 중 하나로부터 Z가 전사되었고, 염기 개수는 X가 Z 의 2 배이다.
- X_{1} 에서 아데닌(A)의 개수는 210 개이다.
- X_{2} 에서 $\frac{\text { 퓨린 계열 염기의 개수 }}{\text { 피딘 계열 염기의 개수 }}=\frac{2}{3}$ 이고, 사이토신(C)의 개수는 150 개이다.
$\circ \mathrm{Y}_{1}$ 에서 구아닌(G)의 개수는 90 개이다.
- Y_{2} 에서 $\frac{\text { 퓨린 계열 열기의 개수 }}{\text { 피리미닌 계열 염기의 개수 }}=\frac{9}{11}$ 이고, 타이민(T)의 개수는 아데닌(A)의 개수의 2 배이다.
- Z 에서 유라실(U)의 개수는 120 개이고, 퓨린 계열 염기의 개수는 피리미딘 계열 염기의 개수보다 120 개 많다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [211116]
<보 기
ㄱ. Y 에서 사이토신(C)의 개수는 240 개다.
ㄴ. Z 가 만들어질 때 주형으로 사용된 DNA 가닥은 X_{1} 이다.
ㄷ. 염기 간 수소 결합의 총개수는 X에서가 Y에서보다 30 개 적다.

CODE \#2. - Transcription Factor Inference

1. 다음은 유전자 A 와 B 의 전사 조절에 관한 자료이다.

○ A 와 B 는 각각 서로 다른 1 개의 전사 인자에 의해 전사가 촉진된다.
$\circ \mathrm{A}$ 는 단백질 α 를, B 는 단백질 β 를 암호화한다. α 와 β 중 하나만이 전사 인자이다. 이 전사 인자는 A 와 B 중 하나의 전사를 촉진한다.
$\circ \mathrm{A}$ 의 전사를 촉진하는 전사 인자는 전사 인자 결합 예상 부위 (a)~(c) 중 하나에만, B 의 전사를 촉진하는 전사 인자는 전사 인자 결합 예상 부위 (d)~(8) 중 하나에만 결합한다.

- (a)~(g)가 모두 존재하는 경우인 (가)와 그 일부가 제거된 경우인 (나)~(마)에서 각각 전사되는 A 와 B 의 mRNA 상대량은 아래의 그림과 같다.

구분	(가)	(나)	(다)	(라)	(마)
제거된 부위	없음	© (¢	(a), (b), (d)	(c)	© (8)
A 와 B 의 mRNA 상대량					

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [150620]

<보 기>

ㄱ. β 는 (c)에 결합하는 A 의 전사 인자이다.
ㄴ. (마)에는 B 의 전사를 촉진하는 전사 인자가 존재한다.
ㄷ. (a)~(B) 중 (d)와 (e)가 동시에 제거되었을 때 B 의 전사가 억제된다.
2. 다음은 어떤 동물의 세포 $\mathrm{I} \sim \mathrm{I}$ 에서 유전자 w, x, y, z 의 전사 조절에 대한 자료이다.

○ w, x, y, z 의 프로모터와 전사 인자 결합 부위 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ 는 그림과 같다.

$\|\mathrm{A}\|$	B		
프로모터	유전자 w		
$\|\mathrm{~A}\|$	C	프로모터	유전자 x
$\mathrm{~A} \mid$	C	프로모터	유전자 y
	B	C	프로모터
	유전자 z		

$\circ w, x, y, z$ 의 전사에 관여하는 전사 인자는 (ㄱ), (ㄴ), (ㄷ)이다. (ㄱ)은 A 에만 결합하며, (ㄴ)은 B 와 C 중 어느 하나에만 결합 하고 (ㄷ)은 그 나머지 하나에 결합한다.
○ w, x 각각의 전사는 각 유전자의 전사 인자 결합 부위 모두에 전사 인자가 결합했을 때 촉진된다. y, z 각각의 전사는 각 유전자의 전사 인자 결합 부위 중 하나에만 전사 인자가 결합 해도 촉진된다.

- I 에서 x 의 전사가 촉진된다.
- Π 에서 y 의 전사가 촉진되며, (ㄱ)~(ㄷ) 중 (ㄴ)만 발현된다.
- $\mathrm{I} \sim \mathrm{III}$ 중 w 의 전사는 III에서만 촉진된다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [170620]

<보 기>

ㄱ. (ㄴ)은 C 에 결합한다.
ㄴ. I 에서 y 의 전사와 z 의 전사가 모두 촉진된다.
ㄷ. w, x, y, z 중 $\mathrm{I} \sim \mathrm{III}$ 모두에서 전사가 촉진되는 유전자는 2 개이다.
3. 다음은 어떤 동물의 세포 $\mathrm{I} \sim$ II에서 유전자 x, y, z 의 전사 조절에 대한 자료이다.

- x, y, z 는 각각 전사 인자 $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 를 암호화하며, x, y, z 의 프로모터와 전사 인자 결합 부위 A, B,
 C, D 는 그림과 같다.
$\circ x, y, z$ 의 전사에 관여하는 전사 인자는 (ㄱ), (ㄴ), (ㄷ), (ㄹ)이다. (ㄱ)은 A 에만, (ㄴ)은 B 에만 결합하며, (ㄷ)은 C 와 D 중 어느 하나에만 결합하고, (ㄹ)은 그 나머지 하나에 결합한다.
○ x 의 전사는 전사 인자가 A 와 B 중 하나에만 결합해도 촉진 되고, z 의 전사는 전사 인자가 B 와 C 중 하나에만 결합해도 촉진된다. y 의 전사는 A 에 전사 인자가 결합하고 동시에 다른 전사 인자가 C 와 D 중 하나에만 결합해도 촉진된다.
- I 과 III에서는 각각 $\mathrm{X} \sim \mathrm{Z}$ 중 2 가지만 발현되고, Π 에서는 $X \sim Z$ 중 적어도 하나가 발현된다.
- ㅍ에서는 (ㄱ) ~(ㄹ) 중 (ㄷ)만 발현된다.
- (ㄴ)은 I 에서 발현되지 않고, (ㄱ)은 III에서 발현되지 않는다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [171116]

<보 기>

ㄱ. I 에서는 (ㄷ)이 발현되지 않는다.
ㄴ. 피에서는 (ㄴ)이 발현된다.
ㄷ. (ㄹ)의 결합 부위는 D 이다.
4. 다음은 어떤 동물의 초기 발생에서 유전자 w, y 의 전사 조절에 대한 자료이다.

> - 유전자 a, b, c 는 각각전사 인자 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ 를 암호화하며, A, B, C 는 w, y 의 전사 촉진에 관여한다.
> ㅇ 세포 (가)에서는 y 의 전사가 일어나며, 세포 (나)에서는 w 와 y 의 전사가 모두 일어나고, 세포 (다)에서는 w 의 전사는 일어나고 y 의 전사는 잉ㅇㄴㅏㅏㅈㅣ 않는다.
> - (가)에서는 a, c 만 발현되고, (나)에서는 a, b, c 가 모두 발현 되고, (다)에선ㄴ a, 만 발현된다.
> - 표는 (가), (나), (다)에서 a, b, c 각각의 발현을 인위적으로 억제할 때, w, y 의 전사 여부를 나타낸 것이다.

세포	(가)	(나)			(다)	
억제된 유전자	a	a	b	c	a	b
w	\times	\times	\times	\bigcirc	(ㄱ)	\times
y	\times	\bigcirc	\bigcirc	\times	\times	(ㄴ)
(○:전사됨, $\times:$ 전사 안 됨)						

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, $\mathrm{A} \sim \mathrm{C}$ 이외의 다른 전사 인자는 고려하지 않는다.)
[180620]
<보 기>
ㄱ. (ㄱ)과 (ㄴ)은 모두 ' \times '이다.
ㄴ. w 의 전사가 일어나려면 A 와 B 가 모두 필요하다.
ㄷ. (가)에서 c 의 발현을 인위적으로 억제하면 y 의 전사가 일어나지 않는다.
5. 다음은 유전자 x 와 y 의 전사 조절에 대한 자료이다.

- x 는 단백질 X 를, y 는 단백질 Y 를 암호화하며, x 와 y 는 각각 서로 다른 1 개의 전사 인자에 의해 전사가 촉진된다.
$\circ \mathrm{X}$ 와 Y 중 하나만이 전사 인자이고, 이 전사 인자는 x 와 y 중 하나의 전사를 촉진한다. X 는 x 의 전사를 촉진하지 않고 Y 는 y 의 전사를 촉진하지 않는다.
$0 x$ 와 y 의 프로모터와 전사 인자 결합 예상 부위 $\mathrm{A} \sim \mathrm{H}$ 는 그림과 같다.

A	B	C	$\mathrm{D} \mid$					
프로모터 유전자 $x \mid$					E	F	G	$\mathrm{H} \mid$ 프로모터 유전자 $y \mid$
:---	:---	:---	:---					

$\circ x$ 의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{D}$ 중 (ㄱ) 연속된 두 부위에 결합하는 경우에만 촉진되고, y 의 전사는 전사 인자가 $\mathrm{E} \sim \mathrm{H}$ 중 한 부위에 결합하는 경우에만 촉진된다.
$\circ \mathrm{A} \sim \mathrm{H}$ 의 제거 여부에 따른 조건 (가)~(마)에서 전사가 촉진되는 유전자는 표와 같다.

조건	(가)	(나)	(다)	(라)	(마)
제거된 부위	없음	$\mathrm{D}, \mathrm{G}, \mathrm{H}$	$\mathrm{A}, \mathrm{B}, \mathrm{E}$	A, F	$\mathrm{C}, \mathrm{E}, \mathrm{F}$
전사가 촉진되는 유전자	x, y	없음	y	x, y	$?$

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 전사 인자 결합 예상 부위의 제거 이외의 다른 요인은 전사 인자의 작용에 영향을 주지 않는다.) [3점] [190616]

-<보 기>

ㄱ. (ㄱ)은 D 를 포함한다.
ㄴ. (다)에는 x 의 전사를 촉진하는 전사 인자가 존재한다.
ㄷ. (마)에서는 y 의 전사가 촉진된다.
6. 다음은 어떤 동물의 세포 $\mathrm{I} \sim \mathrm{V}$ 에서 유전자 w, x, y, z 의 전사 조절에 대한 자료이다.
$\circ w, x, y, z$ 는 각각 전사 인자 W , 효소 X , 효소 Y , 효소 Z 를 암호화한다. $w \sim z$ 가 전사되면 $\mathrm{W} \sim \mathrm{Z}$ 가 합성된다.

- 유전자 (가), (나), (다), (라)의 \begin{tabular}{|l||l|l|l|}
\hline A \& B \& D \& 프로모터 유전자 (가)

\hline

 프로모터와 전사 인자 결합

\hline \& B \& C \& D

 프로모터 유전자 (나) 부위 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ 는 그림과

\hline A \& C \& \& 프로모터 유전자 (다)

\hline 같다. \& A \& \& D \& 프로모터 유전자 (라)

\hline \multicolumn{2}{|l|}{}
\end{tabular}

○ (가) \sim (라)는 $w \sim z$ 를 순서 없이 나타낸 것이고, $w \sim z$ 의 전사에 관여하는 전사 인자는 $\mathrm{W},($ ㄱ), (ㄴ), (ㄷ)이다. (ㄱ)은 A 에만, (ㄴ)은 B 에만, 드은 C 에만, W 는 D 에만 결합한다.
$\circ w \sim z$ 의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{D}$ 중 하나에만 결합해도 촉진된다.

- 표는 세포 $\mathrm{I} \sim \mathrm{V}$ 에서 $w \sim z$ 의 전사 여부를 나타낸 것이다. $\Pi \sim \mathrm{V}$ 는 I 에 W , (ㄱ), (ㄴ), (ㄷ) 중 각각 서로 다른 1 가지를 넣어준 세포이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [190915]
<보 기>
ㄱ. (a)는 ' \times '이다.
ㄴ. 유전자 (가)는 $z^{\text {이다. }}$
ㄷ. V 는 I 에 W 를 넣어준 세포이다.
7. 다음은 어떤 동물의 세포 I 에서 유전자 x, y, z 의 전사 조절에 대한 자료이다.
$\circ x, y, z$ 는 각각 전사 인자 X , 전사 인자 Y , 효소 Z 를 암호화 하며, $x \sim z$ 가 전사되면 $\mathrm{X} \sim Z$ 가 합성된다.
○ 유전자 (가), (나), z 의 프로모터 와 전사 인자 결합 부위 A, B, C, D 는 그림과 같다.

A	B	C	프로모터 유전자 (가)
A	C		프로모테 유전자 (나)
	B	D	프로모테 유전자 z

0 (가)와 (나)는 각각 x 와 y 중 하나이다. $x \sim z$ 의 전사에 관여하는 전사 인자는 $\mathrm{X}, \mathrm{Y},(\mathrm{T})$, (ㄴ)이다. X 는 B 와 D 중 어느 하나에만 결합하고, Y 는 그 나머지 하나에만 결합한다. (ㄱ)은 A 와 C 중 어느 하나에만 결합하고, (ㄴ)은 그 나머지 하나에만 결합한다.
○ (가)의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{C}$ 중 적어도 두 부위에 결합 해야 촉진되고, (나)와 z 의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{D}$ 중 하나에만 결합해도 촉진된다.

- 세포 I 에서는 $X \sim Z$ 가 모두 발현 되고, (ㄱ)과 (ㄴ) 중 (ㄱ)만 발현된다.
- 세포 I 에서 $\mathrm{A} \sim \mathrm{D}$ 의 제거 여부에 따른 $x \sim z$ 의 전사 결과는 표와 같다.

제걱됳	A	B	C	D
x	\bigcirc	\bigcirc	?	\bigcirc
y	\bigcirc	\times	\times	\bigcirc
z	\bigcirc	\times	\times	(a)
(O : 전사됨, \times : 전사 안 됨)				

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 전사 인자 결합 부위의 제거 이외의 다른 요인은 전사 인자의 작용에 영향을 주지 않는다.) [3점] [211113]
-<보 기>
ㄱ. (a)는 ' O '이다.
ㄴ. 유전자 (나)는 y 이다.
ㄷ. 전사 인자 Y 는 B 에 결합한다.
8. 다음은 어떤 동물의 세포 $\mathrm{I} \sim \mathrm{IV}$ 에서 유전자 w, x, y, z 의 전사 조절에 대한 자료이다.

- 유전자 a, b, c, d 는 각각 전사 인자 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ 를 암호화하며, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ 는 w, x, y, z 의 전사 촉진에 관여한다.
$\circ w$ 의 전사는 b 가 발현되고 동시에 c 와 d 중 적어도 하나가 발현되어야 촉진된다.
○ x 의 전사는 a 와 c 가 모두 발현되어야 촉진된다.
○ y 의 전사는 a 가 발현되고 동시에 b 와 d 중 적어도 하나가 발현되어야 촉진된다.
$\circ z$ 의 전사는 b 와 c 중 적어도 하나가 발현되어야 촉진된다.
- Π 에서는 b 가 발현되지 않는다.
- 표는 $\mathrm{I} \sim \mathrm{IV}$ 에서 (가), (나), (다), z 의 전사 여부를 나타낸 것이다. (가)~(다)는 $w \sim y$ 를 순서 없이 나타낸 것이다.

구분	I	II	III	IV
(가)	\bigcirc	\times	\bigcirc	\bigcirc
(나)	\times	(a)	\times	\bigcirc
(다)	\times	\bigcirc	\times	\times
z	\times	\bigcirc	\bigcirc	\bigcirc
$(\bigcirc$:전사됨, $\times:$ 전사 안 됨)				

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 조건 이외는 고려하지 않는다.) [220911]
<보 기
ㄱ. (다)는 x 이다.
ㄴ. (a)는 ' O '이다.
ㄷ. III과 IV 에서 모두 d 가 발현된다.

CODE \#3. - Genetic Recombination Tech

1. 그림 (가)는 유전자 재조합 기술을 이용하여 대장균 I 로부터 대장균 ㅍㅇㅘ II을 얻는 과정을, (나)는 (가)의 대장균 $\mathrm{I} \sim$ IIO을 섞어 항생제를 첨가하지 않은 배지와 2종류의 항생제 중 하나를 첨가한 각각의 배지에서 배양한 결과를 나타낸 것이다. I은 유전자 X의 단백질을 생산하고 유전자 A 와 B 는 각각 앰피실린 저항성 유전자와 카나마이신 저항성 유전자 중 하나이다. 동일한 대장균은 각 배지 에서 동일한 위치에 존재한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [150918]
<보 기>
ㄱ. ㅍ는 카나마이신과 앰피실린을 함께 첨가한 배지에서 군체를 형성한다.
ㄴ. X가 삽입된 유전자는 앰피실린 저항성 유전자이다.
ㄷ. (나)에서 (ㄱ)은 III의 군체이다.
2. 그림 (가)는 유전자 재조합 기술을 이용하여 대장균 I 로부터 유전자 X 의 단백질과 유전자 Y 의 단백질을 모두 생산하는 대장균 IV 를 얻는 과정을, (나)는 (가)의 대장균 $\mathrm{I} \sim \mathrm{IV}$ 를 섞어 3 종류의 항생제 중 하나를 첨가한 각각의 배지에서 배양한 결과를 나타낸 것이다. 유전자 $\mathrm{A} \sim \mathrm{C}$ 를 각각 앰피실린 저항성 유전자, 카나마이신 저항성 유전자, 테트라사이클린 저항성 유전자 중 하나이다. 동일한 대장균은 각 배지에서 동일한 위치에 존재한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [151118]
<보 기>
ㄱ. Y가 삽입된 위치는 카나마이신 저항성 유전자이다.
ㄴ. (나)에서 (ㄱ)은 X 의 단백질을 생산한다.
ㄷ. A는 앰피실린 저항성 유전자이다.

3．다음은 유전자 재조합 기술에 이용되는 제한 효소와 재조합 DNA가 도입된 대장균을 선별하는 방법에 대한 자료이다．

〔제한 효소〕

－표는 4 가지 제한 효소의 인식 서열과 절단 위치를 나타낸 것이다．

제한 효소	인식 서열과 절단 위치	제한 효소	인식 서열과 절단 위치
ApaI	5＇－GGGCC：C－3＇	PspOMI	$5^{\prime}-\mathrm{G}: \mathrm{GGCCC}-3^{\prime}$
	5^{\prime}－G：C C G G C－3＇	XmaI	5^{\prime}－CiC C G G G－3＇
NgoMiv	$3^{\prime}-\mathrm{CGGCC}: \mathrm{G}-5^{\prime}$		$3^{\prime}-\mathrm{GGGCC} \mathrm{C}-5^{\prime}$

○ 제한 효소에 의해 형성된 DNA 조각 말단의 단일 가닥이 서로 상보적이면，DNA 조각은 연결 효소에 의해 연결된다．

〔재조합 DNA가 도입된 대장균 선별 방법〕

○ 그림은 인슐린 유전자가 재조합된 플라스미드를 갖는 대장균을 선별하는 방법을 나타낸 것이다．

－표에 있는 각 제한 효소가 인식하는 서열은（a）와（b）각각에 모두 있고 인슐린 유전자에는 없다．
－ $\operatorname{lac} Z$ 유전자의 산물은 X－gal을 분해하여 대장균 군체를 흰 색에서 푸른색으로 변화시킨다．

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르 시오．（단，돌연변이는 고려하지 않는다．）［3점］［160918］

- <보 기>

ㄱ．（ㄱ）과（ㄴ）은 모두 앰피실린에 대한 저항성이 있다．
ㄴ．（ㄴ）은 인슐린 유전자가 재조합된 플라스미드를 갖는다．
ㄷ．（ㄴ）을 얻을 수 있는 제한 효소（가）로는 표에서 2 가지가 있다．

4．다음은 유전자 재조합 기술에 이용되는 제한 효소와 재조합 DNA가 도입된 대장균을 선별하는 방법에 대한 자료이다．

○ 그림（가）는 유전자 y 가 들어 있는 DNA X를，（나）는 길이가 2800 염기쌍인 플라스미드 P 를 나타낸 것이다． X 의（a）～（e）는 각각 제한 효소 A 또는 B 의 절단 위치이고， X 를 A 로 절단할 경우 3 개의， B 로 절단할 경우 4 개의 DNA 조각이 생긴다． P 에는 A 와 B 의 절단 위치가 각각 1 개씩 있다．

（가）

（나）
－젖당 분해 효소 유전자의 산물은 물질 G 를 분해하여 대장균 균체를 흰색에서 푸른색으로 변화시킨다．
－그림（다）에서 X 를 A 또는 B 로 절단하여 생성된 DNA 조각을 P 에 삽입하여 만든 재조합 플라스미드 $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ 의 염기쌍 3850， 3500,3040 이다．
－그림（라）는 $\mathrm{P}_{1} \sim \mathrm{P}_{3}$ 을 각각 숙주 대장균에 도입하여 만든 대장균 I～II을 혼합하여 서로 다른 배지에서 배양한 결과 이다．앰피실린과 카나마이신은 항생제이다．

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르 시오．（단， A 로 절단한 부분과 B 로 절단한 부분은 서로 연결되지 않으며，돌연변이는 고려하지 않는다．）［3점］［180917］

＜보 기＞

ㄱ． X 에서 A 의 절단 위치는（b）와（e）이다．
ㄴ．（ㄱ）은 Π 의 군체이다．
ㄷ．（라）의 앰피실린 첨가 배지에서 형성된 군체는 모두 y 를 가진다．
5. 그림은 유전자 재조합 기술을 이용하여 대장균 I 로부터 유전자 x 의 단백질과 유전자 y 의 단백질을 모두 생산하는 대장균 IV 를 얻는 과정을, 표는 대장균 $\mathrm{I} \sim \mathrm{IV}$ 를 섞어 서로 다른 배지에서 배양한 결과를 나타낸 것이다. 젖당 분해 효소 유전자의 산물은 물질 Z 를 분해하여 대장균 군체색을 흰색에서 푸른색으로 변화시킨다. 앰피실린과 카나마이신은 항생제이고, 유전자 $a \sim c$ 는 각각 앰피실린 저항성 유전자, 카나마이신 저항성 유전자, 젖당 분해 효소 유전자 중 하나이며, (ㄱ)~ (ㄹ)은 I $\sim \mathrm{IV}$ 를 순서 없이 나타낸 것이다.

구분		(7)	(L)	(ㄷ)	(2)
Z 와 앰피실린이 첨가된 배지	군체 형성 여부	형성함	(7)	형성함	형성 못함
	군체색	푸른색	?	흰색	?
$\begin{gathered} \text { Z와 카나마이신이 } \\ \text { 첨가된 배지 } \end{gathered}$	군체 형성 여부	형성함	형성함	형성함	?
	군체색	푸른색	휜색	휜색	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [210916]
<보 기>
ㄱ. (가)는 ‘형성 못함’이다.
ㄴ. b 는 카나마이신 저항성 유전자이다.
ㄷ. (ㄷ)은 x 를 가진다.

[^0]
[^0]: * 확인 사항
 - 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.

