미적분 문제 (2000덕)
첫 풀이 2000덕 드리겠습니다!
(+ 유명한 문제입니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재밌네 부럽다 100만유튜버면 내가 평생 벌 것보다 더 많은 돈을 벌었겠지 잘생기고...
-
25시즌 1컷 48 50 50이 시발 말이되나
-
옵창 개많구나.. 분명 나보다 렙이 낮았는데 지금은 높네 6
따라잡기가 힘들군아
-
아주 귀여워 코끼리 으흐흐
-
300은 이거 너무 어려운거 아닙니까
-
칼럼이란건 19
1. 가독성이 좋아야됨 2. 정말 가치가 있는 내용이어야함 요즘 수험생들은 이미...
-
바람 칼같네 17
잠깐 담배피러 나왔는데
-
맞팔구 6
똥벳이랑 똥테가 잘 어울릴거같아서요 오네가이시마스~
-
남캐일러 투척. 11
음 역시귀엽군
-
동대 터졌다는데 6
얼마나 폭난거에요? 궁금하네
-
반수하지 마세요 12
-
내가 그렇게 풀었거든
-
대학은 잘 모르겠다 근데 부남 많은 대학 가면 뭐 별 상관없을 것 같긴 함
-
상위 1퍼 옵창 이런건가..
-
갓생선언 9
오늘열두시에잠들어 내일여덟시에일어날것입니다
-
예쁜 여르비만 5
너가왜클릭
-
재미로 화2 생2 봐보고 싶음 ㅠㅠ
-
아 얼어 죽겠다 4
누가 와서 저 좀 녹여줘요
-
아 많이 뒤쳐져잇네, 열심히 치곡차곡 해서 따라가야지. X 앞에 잇는 넘들을 빠르게...
-
어디가 젤 쌈 인생네컷 이러는애도있던디 과외용으로 쓰고 나중에도 쓰게 좀 쟁여두게
미분해야겠네
어캐푸는거야
a[n] = 2^(1/n²) + 3^(1/n²) + ... 2^(1/n)
∫[1, 2ⁿ] x^(1/n²) dx ≤ a[n] ≤ ∫[2, 2ⁿ+1] x^(1/n²) dx
{1 - 1/(n² + 1)} (2^(1/n + n) - 1) = P[n] ≤ a[n]
≤ {1 - 1/(n² + 1)} ((2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)) = Q[n]
ln(P[n])/n = ln{1 - 1/(n² + 1)}/n + ln{2^(1/n + n) - 1}/n
lim(n→∞) ln(P[n])/n = lim(n→∞) ln{2^(1/n + n) - 1}/n
= lim(n→∞) [ln{2^(1/n + n) - 1}/ln{2^(1/n + n)}] × [ln{2^(1/n + n)}]/n
= lim(n→∞) (1/n² + 1)ln2 = ln2
ln(Q[n])/n = ln{1 - 1/(n² + 1)}/n + ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
lim(n→∞) ln(Q[n])/n = lim(n→∞) ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n + ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n
+ [ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/ln{((2ⁿ + 1)/2)^(1/n² + 1)}]
× [ln{((2ⁿ + 1)/2)^(1/n² + 1)}]/n
= lim(n→∞) (1/n³ + 1/n)ln2 + (1/n³ + 1/n)(ln(2ⁿ + 1) - ln2)
= lim(n→∞) (1/n³ + 1/n)ln(2ⁿ + 1)
= lim(n→∞) {ln(2ⁿ + 1)/ln(2ⁿ)} × ln(2ⁿ)/n × (1/n² + 1)
= ln2
lim(n→∞) ln(P[n])/n = lim(n→∞) ln(Q[n])/n = ln2
∴ lim(n→∞) a[n] = ln2
적분을 이용한 풀이도 있네요ㄷㄷㄷㄷ
https://orbi.kr/00071716950
위 문제에서 사용했었던 방식으로 풀어봤습니다
혹시 정석적인 풀이는 뭔가요?
적어주신 풀이가 정석적인 풀이입니다 :)
아 상합은 2로 해서 조절하나 했는데 그냥 이게 정석이군요. 근데 lim x->inf 저 식은 없어도 풀 수 있지 않나요?
ln(2^n-1)/n 극한을 가장 쉽게 처리할만한 극한을 주었습니다 :)
이런 문제들도 많이 풀면 금방 풀게 될까요? 이거도 처음에 식조작 뻘짓을 하긴 했는데ㅠ푸는 데만 거의 20~30분 들어서
'경시'용 문제이기 때문에 오래 걸릴수 밖에 없는 문제라 봅니다! 경시용 문제의 특징이 '발상'이기 때문에 오래 걸린다고 해서 너무 신경쓰실 필요는 없을 듯 합니다!