미적분 문제 (2000덕)
첫 풀이 2000덕 드리겠습니다!
(+ 유명한 문제입니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
EBS 국어 무시하지말고 꼼꼼히 해야함 원본 ebs 한번 깔끔하게 풀고 강e분으로...
-
룸카페 갔는데 4
알바같던데... 들어갈때 왤케 째려보냐 무서버라..
-
그런 팀이 2025 담원입니다
-
시발점 질문 3
지금 2회독째인데 예제가 술술 풀리면 굳이 개념 강의 안봐도 되나요?
-
자취방이나 기숙사 지역 (전입 신고) or 본가 지역
-
300은 이거 너무 어려운거 아닙니까
-
연금연구회 "국민연금 건강 너무 나빠…'더 받는' 개혁 안돼" 2
'재정안정' 중시 연구자들 "소득대체율 현행 유지해야" (서울=연합뉴스) 오진송...
-
오티신청 아직 받음?
-
받음?? 대신 투자 망하면 할수있는 직업 노가다밖에 없음 ㅇㅇ
-
왜 농어촌 외대 합격 발표가 난거 같은데 우리 학교는 조용한거냐? 외대 설캠...
-
동대 터졌다는데 6
얼마나 폭난거에요? 궁금하네
-
휴릅 3
2월 7일 6시까지 휴릅할게요 바자관에서 하다 걸리면 벌점이라 ㅜㅜ 공부좀 해야죠
-
플라톤처럼 생기면 플라톤이고 아리스토처럼 생기면 아리스토잖슴
-
다 세전이죠?
-
존재하나요
-
실시간으로 계정하나더만듦
-
처음에 무진행 버스 타고갈때 몸에 힘 빼니까 더 피로해진다는거 ㅈㄴ 공감됨 근데...
-
상위 1퍼 옵창 이런건가..
-
예쁜 여르비만 5
너가왜클릭
미분해야겠네
어캐푸는거야
a[n] = 2^(1/n²) + 3^(1/n²) + ... 2^(1/n)
∫[1, 2ⁿ] x^(1/n²) dx ≤ a[n] ≤ ∫[2, 2ⁿ+1] x^(1/n²) dx
{1 - 1/(n² + 1)} (2^(1/n + n) - 1) = P[n] ≤ a[n]
≤ {1 - 1/(n² + 1)} ((2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)) = Q[n]
ln(P[n])/n = ln{1 - 1/(n² + 1)}/n + ln{2^(1/n + n) - 1}/n
lim(n→∞) ln(P[n])/n = lim(n→∞) ln{2^(1/n + n) - 1}/n
= lim(n→∞) [ln{2^(1/n + n) - 1}/ln{2^(1/n + n)}] × [ln{2^(1/n + n)}]/n
= lim(n→∞) (1/n² + 1)ln2 = ln2
ln(Q[n])/n = ln{1 - 1/(n² + 1)}/n + ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
lim(n→∞) ln(Q[n])/n = lim(n→∞) ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n + ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n
+ [ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/ln{((2ⁿ + 1)/2)^(1/n² + 1)}]
× [ln{((2ⁿ + 1)/2)^(1/n² + 1)}]/n
= lim(n→∞) (1/n³ + 1/n)ln2 + (1/n³ + 1/n)(ln(2ⁿ + 1) - ln2)
= lim(n→∞) (1/n³ + 1/n)ln(2ⁿ + 1)
= lim(n→∞) {ln(2ⁿ + 1)/ln(2ⁿ)} × ln(2ⁿ)/n × (1/n² + 1)
= ln2
lim(n→∞) ln(P[n])/n = lim(n→∞) ln(Q[n])/n = ln2
∴ lim(n→∞) a[n] = ln2
적분을 이용한 풀이도 있네요ㄷㄷㄷㄷ
https://orbi.kr/00071716950
위 문제에서 사용했었던 방식으로 풀어봤습니다
혹시 정석적인 풀이는 뭔가요?
적어주신 풀이가 정석적인 풀이입니다 :)
아 상합은 2로 해서 조절하나 했는데 그냥 이게 정석이군요. 근데 lim x->inf 저 식은 없어도 풀 수 있지 않나요?
ln(2^n-1)/n 극한을 가장 쉽게 처리할만한 극한을 주었습니다 :)
이런 문제들도 많이 풀면 금방 풀게 될까요? 이거도 처음에 식조작 뻘짓을 하긴 했는데ㅠ푸는 데만 거의 20~30분 들어서
'경시'용 문제이기 때문에 오래 걸릴수 밖에 없는 문제라 봅니다! 경시용 문제의 특징이 '발상'이기 때문에 오래 걸린다고 해서 너무 신경쓰실 필요는 없을 듯 합니다!