Whitehead Torsion
Motivation: "그들의 대화" 에서 최근에 나오는 핵심 용어들 중 하나가 Whitehead torsion이라는 것인데, 이러한 것을 고려하는 이유에 대해서 먼저 설명하기로. 모든 것의 기원은 소위 "cobordism theory"에 기반을 함: Let $M$ and $N$ be smooth closed manifolds of dimension $n$. An \textit{$h$-cobordism} from $M$ to $N$ is a compact smooth manifold $B$ of dimension $(n+1)$ with boundary $\partial B \cong M\coprod N$ having the property that the inclusion maps from $M$ and $N$ to $B$ are homotopy equivalences. If $n\geq 5$ and the manifold $M$ is simply connected, then the Smale's $h$-cobordism theorem says that $B$ is diffeomorphic to a product $M\times [0,1]$ (and, in particular, $M$ is diffeomorphic to $N$).
다시 말해서, cobordism은 두 다양체 M,N을 자연스럽게 interpolate하는 것을 말함. 여기서 $h$는 homotopy를 말하고, 그 이유는 up to homotopy로 interpolate을 했기 때문. 5차원 이상에서는 이것이 어떤 면에서 ``trivial'' 하다는 것을 말함. Smale이 이 정리를 이용해서 5차원 이상에서의 Poincare Conjecture를 풀었음 (예에에전에 한번 이거 관련 글 썼던 것 같음).
이러한 좋은 이유에 의해서 cobordism theory를 not simply connected인 경우에는 어떻게 사용할 수 있을까 사람들이 고심을 하고, 그렇게 나온 것이 s-cobordism theory임. 이것을 좀 더 자세히 설명하기 위해서는 몇몇 정의들이 필요함:
Definition. Let $X$ be a finite simplicial complex. Suppose that there is a simplex $\sigma\subset X$ containing a face $\sigma_0\subset\sigma$ such that $\sigma$ is not contained in any larger simplex of $X$, and $\sigma_0$ is not contained in any larger simplex other than $\sigma$. Let $Y\subset X$ be the subcomplex obtained by removing the interiors of $\sigma$ and $\sigma_0$. Then the inclusion $\iota:Y\hookrightarrow X$ is a homotopy equivalence. In this situation, we will say that $\iota$ is an \textit{elementary expansion}. Note that $Y$ is a retract of $X$; a retraction $X$ onto $Y$ will be called the \textit{elementary collapse}.
Definition. Let $f:Y\to X$ be a map between finite simplicial complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition of elementary expansions and elementary collapses.
모든 compact smooth manifold는 PL 이기 때문에 finite simplicial complex structure를 갖게 됨. 따라서, smooth manifold의 경우에는 simple homotopy equivalence라는 것을 이야기할 수 있음.
s-cobordism theorem. Let $B$ be an $h$-cobordism theorem between smooth manifolds $M$ and $N$ of dimension $\geq 5$. Then $B$ is diffeomorphic to a product $M\times[0,1]$ if and only if the inclusion map $M\hookrightarrow B$ is a simple homotopy equivalence.
이제 이 s-cobordism theorem을 적용하기 위해서는 언제 homotopy equivalence of smooth manifolds $f:X\to Y$가 simple homotopy equivalence인지 알아내는 것. 이걸 Whitehead가 해결했는데, 각각의 homotopy equivalence $f:X\to Y$에 대해서, 어떤 algebraic invariant $\tau(f)$ called the \textit{Whitehead torsion} of $f$ 라고 하고, 이 torsion은 \textit{Whitehead group} of $X$라고 불리는 특정 abelian group $\mathrm{Wh}(X)$에 존재함. 이 torsion이 정확히 simple homotopy equivalence의 obtruction임. 다시 말해서, $\tau(f)$ vanishes if and only if $f$ is a simple homotopy equivalence.
이제 이 Whitehead torsion이 구체적으로 무엇인지 알아보기로. 먼저 앞에서 정의한 simple homotopy equivalence의 정의를 조금 더 구체적으로 적어봄.
Construction 1. Let $D^n$ denote the closed unit ball of dimension $n$ and let $S^{n-1} = \partial D^n$ denote its boundary. We will regard $S^{n-1}$ as decomposed into hemispheres $S^{n-1}_-$ and $S^{n-1}_+$ which meet along the ``equator'' $S^{n-2} = S^{n-1}_-\cap S^{n-1}_+$.
Let $Y$ be a CW complex equipped with a map $f:(S^{n-1}_-,S^{n-2})\to (Y^{n-1},Y^{n-2})$. Then the pushout $Y\coprod_{S^{n-1}_-}D^n$ has the structure of a CW complex which is obtained from $Y$ by adding two more cells: an $(n-1)$-cell given by the image of the interior of $S^{n-1}_+$ (attached via the map $f|_{S^{n-2}}:S^{n-2}\to Y^{n-2}$) and an $n$-cell given by the image of the interior of $D^n$ attached via the map
$$S^{n-1} = S^{n-1}_-\coprod_{S^{n-2}}S^{n-1}_+\to Y^{n-1}\coprod_{S^{n-2}}S^{n-1}_+.$$
In this case, we will refer to the CW complex $Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expension} of $Y$, and to the inclusion map $Y\hookrightarrow Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expansion}.
The hemisphere $S^{n-1}_-\subset D^n$ is a (deformation) retract of $D^n$. Composition with any retraction induces a (celluler) $c:Y\coprod_{S^{n-1}_-}D^n\to Y$, which we will refer to as an \textit{elementary collapse}. Note that the homotopy class of $c$ does not depend on the choice of retraction $D^n\to S^{n-1}_-$.
Definition 2. Let $f:X\to Y$ be a map of CW complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition
$$X = X_0\xrightarrow{f_1}X_1\xrightarrow{f_2}X_2\to\cdots\xrightarrow{f_n}X_n = Y,$$
where each $f_i$ is either an elementary expansion or an elementary collapse.
We say that two finite CW complexes are \textit{simple homotopy equivalent} if there exists a simple homotopy equivalence between them.
Example. Let $X$ and $Y$ be finite CW complexes and let $f:X\to Y$ be a continuous map. We let $M(f) = (X\times[0,1])\coprod_{X\times\{1\}}Y$ denote the mapping cylinder of $f$. If $f$ is a celluler map, then we can regard $M(f)$ as a finite CW complex (taking the cells of $M(f)$ to be the cells of $Y$ together with cells of the form $e\times\{0\}$ and $e\times(0,1)$, where $e$ is a cell of $X$). The inclusion $Y\hookrightarrow M(f)$ is always a simple homotopy equivalence: in fact, it can be obtained by a finite sequence of elementary expansions which simultaneously add pairs of cells $e\times\{0\}$ and $e\times(0,1)$ (where we add cells in order of increasing dimension).
Note that the map $f$ is homotopic to a composition
$$X\simeq X\times\{0\}\xrightarrow{\iota}M(f)\xrightarrow{r}Y,$$
where $r$ is the canonical retraction from $M(f)$ onto $Y$ (which can be obtained by composing a finite sequence elementary collapses). It follows that $f$ is a simple homotopy equivalence if and only if $\iota$ is a simple homotopy equivalence. Consequently, when we are studying the question of whether or not some map $f$ is a simple homotopy equivalence, there is no real loss of generality in assuming that $f$ is the inclusion of a subcomplex.
Rmk. Celluler approximation theorem says that any continuous map between CW complexes can be homotoped to be a celluler map. In particular, the above example holds for general continuous map $f$.
Simple homotopy equivalence는 homotopy equivalence인 것은 눈으로 쉽게 확인할 수 있다. s-cobordism theorem을 적용하기 위해서, 우리는 그 역이 필요하다.
Question. Let $f:X\to Y$ be a homotopy equivalence between finite CW complexes. Is $f$ a simple homotopy equivalence? If not, how can we tell?
앞서 말했듯이, 이 질문에 대한 대답은 정확히 Whitehead torsion. 이걸 만들기 위해서 먼저 몇몇 정의들이 필요함. 지금까지는 상당히 자명한 것들만 나왔는데 지금부터는 약간 익숙치 않은 것들이 등장하기 시작함.
Definition.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지듣노 16
한번씩 듣고 가세요
-
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
가4나1 시대 등급 기준 생각하고 있었는데 아 ㅋㅋㅋ
-
수학 N제 고민 중입니다 기출 3번정도 돌린 후에 풀 계획이고 지금 1번...
-
3일 참았는데 16
방출해도되는거 아닌가요
-
운동 끝! 5
씻고 오겠습니다.... 탕에 몸을 담거야겠어...
-
재밌긴 한데 이걸 선택했다가는 점수도 재밌어 질 거 같음
-
수학 최상위권 비결 21
제발 알려주세요 ㅜㅜ 높2~낮1이 높1 되기 위해서 뭐 해야하나요.. 지금은...
-
십 작 아
-
정답은....Chat gpt(채찍pt)입니다!!
-
[서울=뉴시스] 최지윤 기자 = MBC 기상캐스터 오요안나(1996~2024)가...
-
아시는분 있나요?? 이게 제가 국어를 잘하지 않는데 정답률이 꽤 잘나오네요 쉬운편인거죠??
-
내가 진짜 좋아하는 유튜버(나는 랄팤 팔차선) 영상은 올라와도 밥먹을 때 먹으면서...
-
혹시 블랙마켓이라고 생각하셨습니까? 당신의 그런 차별적인 생각이 인류애에 미치는...
-
주관적 재미티어로 일반사회>>>지리>윤리=역사임
-
조금 된거긴 한데
-
경제+화1은 신종변태?
-
[칼럼] 독서 왜 어려울까? 약간의 국어 교육학 개론을 곁들인 9
국어 점수를 잘 받는 방법은 간단합니다. 잘 푸는 것이죠. 하지만 쉽지 않습니다....
-
여러 해설을 맛보는 건가
-
아직 전역 안해서 내년에야 입학할 것 같은데 잘 지낼 수 있겠지?
-
강기원T 시즌2부터 합류하면 많이 빡센가요? 아직 미적분 진도를 다 못 빼서 개념...
-
경제에 감동이 있는거임...
-
헬스끗 6
갓생러로 살기 0일차
-
걍 경제할거면 물리 ㄱㄱ
-
혹시 블랙홀이라고 생각하셨습니까? 당신의 그런 차별적인 생각이 우리의 미래를 더욱...
-
최저용으로 학원에서 어삼쉬사랑 수특 풀고 있는데 어삼쉬사는 풀면 한스텝당 2문제...
-
7개중에 4개를 못풀어 야발 ㅜㅜㅠㅜㅜㅜㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅠㅜ 이건 짬때리고...
-
굿닥터 미국 일본 터키 중국에서 리메이크된 초히트작 법률 드라마로 치면 이상한...
-
학벌로 최상위권이 아닌데 대체 인간이 맞나 싶은 능지를 가진 괴물들이 있음
-
ㅇㅇ
-
전투력 올라가긴한다 그래도 힘드렁...
-
N제들 수십개씩 사서 하루컷 며칠컷 인증하면서 N제 평가하시는 분들은 적백...
-
혹시 깜깜무소식이라고 생각하셨습니까? 당신의 그런 차별적인 생각을 청소년들이 듣고...
-
든든한 국밥같은 포지션이었는데..
-
혹시 흑흑이라고 생각하셨습니까? 당신의 그런 차별적인 생각이 세상을 더욱 혼란스럽게...
-
사실 뻥임뇨
-
오해원 : 노래 잘부름, 연예인임, 군대 안감, 요즘 뜨는 라이징스타 이해원 :...
-
미분 하지않고 그리기
-
너무 쉽지 않음? 맨뒤에 문제도 길어도 한 5분 고민하면 풀리던데
-
아 경제 ㄹㅇ 4
(대충 경제에 미친 몇몇 오르비언들을 낚기 위한 글)
-
전역기원 3일차 0
일병 1호봉이에요
-
미국 백악관이 현지시간 31일 트럼프 정부의 불법 이민 단속 실적을 소개하며 한국...
-
코스모스 3회독하러간다
-
연대 지반 vs 지방약 12
연대 지능형 반도체 -시스템 반도체 아님(계약학과X) -학사 3년 (조기졸업...
-
으어 6
죽겠다
-
목시 성적순 1
이번에 성적순 3합 8이던데 본인은 3합 7임(영어2도 1로 쳐준다 해서)...
-
그냥 청년경찰 보다가 관심생격서 그러는데 군 제대하고 입학하면 어떻게됨? 원래...
세줄요약좀
1. 멋진 대화를 하고 있는 사람들 대화에 끼고 싶다
2. 대화에 끼려면 그 사람들이 무슨 말을 하는지 이해해야 한다
3. 따라서 그들의 대화 중에 나오는 용어들을 먼저 알아볼까 고민중이다