[자작문제 해설] 수1 삼각함수 문항
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
비싼건
-
인하대 공학융합학부 304명 중 1등인데 장학금이 아니더라고요.. 혹시 장학금...
-
피부 좋아지는법 0
피부에 아무것도 안바르기
-
그만 뺏어갓 0
애니프사단 덕코가 얼마나 많은거야
-
수1,2 미적 시간분배 몇시간씩 해야댐여?
-
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생,...
-
첫날은 예비 1이라 에이 됬다 싶었는데... 뭔가 하 점공 윗순위 보니 빠질 사람이...
-
육군가기 싫은데 ㅅㅃ
-
새로고침 되는 오류 덕분에 이상한 아저씨 레어를 1.2만덕 주고 샀음 하
-
! 0
!
-
캬루룽>< 2
><
-
이 녀석 눌러도 안사져요 ㅠㅠ
-
그냥 전세계적으로도 PC니뭐니 하면서 갈등 많은 건 알겠는데 우리나라는 진짜ㅋㅋ...
-
내 레어! 0
니고미쿠!
-
아 잘못샀다 6
대성마이맥 #~#
-
윤성훈 #~# 0
뭔가 루틴이 되어버려
-
듣고 아침에 질질 짰다
-
아 쓰는순간 바로뻇김
-
정시 내신반영 1
미인정 결석이랑 조퇴 많으면 불리한가요?
-
250630 기출소스가 뭐였죠tan랑 일차함수 교점 기출 6
가형기출인데 정확히 년도아시는분
-
아
-
건강하다는 뜻 맞음? 용돈 다 쓰고 심심해서 헌혈 중임 편의점 교환권 만원 개꿀
-
사탐런해서 사문 1단원 문제풀다가 이거 컨디션좀 타겠다 싶어서 검색해봤더니 은근히...
-
내 당근사가면 5
전쟁함
-
다시 투기를 ><
-
이대 레어 겟또 4
이쁘네
-
레어로 사람들 오르비 안 떠나게 만들기
-
휴식 1
안해.
-
고사국 정시 결과 언제 발표되나요? 감사합니다
-
오이 2
오아
-
오랜만이에요 6
요즘 계속 아프네… 잇올 오전타임 소화하기도 빡센데 당분간 집에서 할까
-
찾아왔다 0
히히
-
가져가 이제
-
레어로 8만 덕 버네 ㅋㅋㅋㅋ
-
딮기팬으로써 딮기는 못참지
-
찍맞도 틀린걸로 치고 작수 공통에서 131415202122 틀렸는데 스블 할만한가요?
-
레어삽니다 0
흐흐
-
레어를 안산다
-
그럼 아쉬운거지뭐 그돈으로 요루시카 사야겠다
-
이제좀가져가라 7
너ㅜㅁ지저분해
-
콜라팔아요 1
ㅠㅠ
-
레어확인 10
으흐ㅡ
-
삼수 고민 ㅜㅜ 4
현역 수시로 숭실대 붙었는데 안가고 재수 -> 수능성적 53445 → 43224...
-
레어 좋은점 1
안 팔리면 글 예쁘게 해줘서 좋음 팔리면 덕코 많아져서 좋음
-
이신혁 T 듣고있어서도 칼레이도스코프 기출 풀고있는데 이번에 시대인재 기출문제집...
-
정벽레어가져옴 3
흐흐
-
물린 줄 알았어요..ㅠㅠ
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ
"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!
좋은 문제 공유해주셔서 감사합니다 :)