수1 도형 특강
나오는 도형은 삼각형과 원 두 가집니다. (짜피 다각형도 삼각형 합친거)
대충 살펴보고 바로 문제로 가겟슴미다.
1. 삼각형
완전히 결정된 삼각형인지 아닌지를 빠르게 판단하는게 중요함미다, 삼각형의 결정 조건을 보면,
SAS, ASA, SSS 등의 조건들을 알고 있으면 그 삼각형을 결정되었다고 할 수 있겠죠.
다만, 저것보다 문제 풀 때 중요한 사실은 닮음조건 + 길이 하나 면 삼각형이 결정된다는거죠. (길이가 크기를 결정)
즉 AA, SAS, SSS 등의 닮음 조건이 있을 때 삼각형의 길이 하나만 알면 완전히 아는 삼각형이 된다는 겁니다.
2. 원
사인법칙을 생각하면 됩니다.
a/SinA = 2R. 즉, 대응변과, 대응각, 반지름 3개 중 2개를 알면 하나를 알 수 잇다는 것만 기억하면 됩니다.
3. 문제 보기 흐흐
이렇게 쓴거 보고 이해가 됏으면 도형이 문제가 안 되겟죠. 문제로 살펴봅시다.
아까 어떤 오르비언 분이 올린 문젠데 이 문제로 같이 확인해보죠.
우선, 우리가 아는걸 정리해봅시다.
1. 반지름, 2. 각 BAD, 3. AB/DA, 4. BE/ED.
Step1) 1번과 2번을 알고 잇으니, Sin법칙을 통해 BD의 길이를 알아낼 수 있다는걸 바로 찾아야합니다.
Step2) Step1을 거치고 난 뒤 보면 삼각형 BAD는 이제 삼각형이 결정되었음을 알 수 있죠.
왜냐면, 3번 조건 AB/DA, 2번 조건 각 BAD를 알고 잇으니
이 삼각형은 SAS 닮음 조건을 만족합니다.
ㅇ여기서 Step1을 통해 BD의 길이를 알아냈으니 삼각형이 결정되었죠.
따라서 Cos제2법칙을 쓰면, AB, AD의 길이를 알 수 있을 겁니다. (삼각형 BAD에 대한 모든 정보를 알 수 있는 상태니 당연히 넓이도 알 수 있음)
이 아래서부턴 도형뿐만 아니라 모든 수학 문제에 해당하는 내용임미다.
Step3) 우리는 이제 BCD라는 삼각형만 알아내면 문제가 풀림을 알 수 있습니다.
우리가 아는걸 정리해보면, BD의 길이 각 DCB의 크기를 알고 있죠.
즉, 삼각형이 결정되기 위해선, (BC/CD)의 비율을 알면 될껍니다.
여기서 막히면 안 되고 당연히 이제 안 쓴 조건을 확인해 봐야할 때입니다.
확인해보면 BE/ED를 안 썼다는걸 알 수 있죠.
그럼 BE/ED를 통해 BC/CD를 알아내야한다는 건데 이 과정은 다음과 같이 진행하면 됩니다.
BE/ED=|BEA|/|AED|=AB*sin(alpha)/AD*sin(beta)=(AB/AD)(BC/CD) (alpha, beta는 각각 각 BAE, 각 EAD.)
그럼 이 과정을 어떻게 생각해내냐 라는 질문이 생길껍니다.
I) 피지컬
사실 위 과정이 생각못할 만한 정도는 아닙니다. 충분한 피지컬이 잇다면 그때 그때 뚫어내면 됩니다.
다만 그만한 피지컬을 키우는건 쉬운 일은 아니겠죠.
II) 풀엇던 문제 분석
하지만 피지컬을 키우지 못했더라도 상관 없습니다.
왜냐면 우리는 이미 이 문제를 봤기 때문이죠.
즉, 저 상황에서 BE/ED, BA/AD, BC/CD 3가지 중 2가지를 알면 나머지 하나를 알 수 있다.
또는, BE/ED를 넓이의 비율로 바꿔낼 수 있다. 정도만 확실히 기억해놓으면 다음에 같은 상황에 빠르게 풀어낼 수 있는겁니다.
또한 이거를 공식으로 창조해내서 나의 도구로 만들어놓을 수도 있겠죠.
마지막은 역시나 cos제2법칙으로 길이들을 알아내면 됩니다.
4. Skill?
i) BE/ED=(BA/AD)*(BC/CD)
위에 Step3를 공식으로 바꿔내면 이런 공식이 됩니다. 외우기도 쉬운 공식이니 쓸데가 있을 겁니다.
사실 저번에 이 공식을 글로 써서 올렷는데, 반응이 차갑더군요 ㅇㅅㅇ;;.. 쓸데 잇어보인다니깐....
ii) 브라마굽타 공식.
원에 내접하는 사각형의 변의 길이가 a,b,c,d일 때 다음 공식이 성립한다
(사각형의 넓이)=sqrt((s-a)(s-b)(s-c)(s-d)) (s=(a+b+c+d)/2).
이걸 알면, Step3이 끝났을 때 a,b,c,d들을 알아내고 삼각형으로 쪼갤 필요 없이, 넓이를 구해낼 수 있겠죠.
공식이 복잡해보이지만 막상 써보면 계산이 오래 걸리지 않고, 도구가 많아서 나쁠건 없습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
10을 2로 나눈다 해놓고 "10 2" 이렇게 써놓음 진짜 개빡대가린가 과탐 쉽게...
-
확통 했으면 8
암만 못해도 연대식으로 705는 되지 않았을까 하는 아쉬움이 미적 28 29 30...
-
1학년 기숙사 의문데 만약에 존나 큰 잘못을해서 기숙사 퇴사당하면 어케됨?
-
국어 비대면과외 2
아이패드도 사고... 열심히 지문분석도 하고..... 학생은 도대체 어디서...
-
중하위지거국이구 1배수 살짝 밖에 예비번호받았습니다..이번에 통합되어서...
-
단어를 존나모름 저 해석은 좀치는데 ㄹㅇ 모름
-
1월2일부터 재수 시작했는데 공부를 많이 못하고 있다는 느낌이 들어서 여쭤봅니다....
-
그니까 설경 보내주세요 흑흑 1년 공부 존나게 할게요
-
무례하고 천박한
-
어디 인증하지 3
흠
-
국수 1컷에서 백분위 99 이상 가려면 어떻게 공부해야 할까용? 6
수시 의대 최저 노리고 있는데 수능날 떨어질 변수 생각하면 백분위 99 실력을...
-
몰래 회동했었는데~
-
뭐 끝내고 풀어야하죠 특히 수학 사탐이여
-
오늘 재수학원에서 만났는데 외대 경제 광탈하고 단대 자전이랑 경대 공대 발표...
-
손이나 인증하자 6
-
알려주시면 감사하겠습니다
-
맞팔하실분 옯스타 공스타 상관x 저는 본계드림
-
지겹다 지겨워 8
이놈의 인기
-
귀찮군 1
귀찮아짐
-
고의 3명 연의1명 설의 1명 경희 1명 아주 1명 인설의 농어촌은 지방의 정도면...
-
어떤 거 가는 거 추천하시나요?? 경남 사는데 서울까지 가는 비용이랑 시간이 만만치...
-
신고로 블라인드처리됏네
-
수분감 스텝0을 풀고 뉴런을듣고 스1,2 푸는거임 ?
-
그냥자이스토리하면 다들어잇나요
-
야식 ㅇㅈ 7
맛좋은 통삼겹 한 점
-
ㅅㅂ큰일났다 3
이거지금이라도내려야하나??
-
내 인생에 그런건 없을거깉음 뭔가그럼 고양이나 키워야지
-
나랑 나이가 5살 이상 차이남 ㅋㅋㅋㅋㅋㅋㅋ 하 나 ㅈㄴ 늙었노
-
미연시하면 욺 요즘 스토리너무 잘만들드라 따흐흑
-
물리 노베 공대 1
저는 인생살면서 물리 공부를 해본 적 없는 사람입니다.. 고1때는 공부도 안하고...
-
근데 팩트는 1
제 가지는 맛있음
-
수학 푸실분?
-
오늘 맞췄는데 허어엉 ㅠ
-
건국대 합격생을 위한 노크선배 꿀팁 [건국대 25][위인전에 대하여] 0
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
100퍼센트 가지무침 때문이라 생각함 다르게요리하면 얼마나 맛있는데 어떻게 그런음식을 조진거지
-
메가? 이신가 그분도 0점이시다가 갑자기 한순간 200받고 산화하셨더라구요ㅠㅜ
-
수학 1
미적 틀리는게 유리한가요 공통 틀리는게 유리한가요 아님 때마다 다른가요??
-
솔직히 연근조림 맛있음 14
ㄹㅇㄹㅇ
-
요즘 그런 생각을 하게되네 내가 사치를 즐기는 성격도아니고 오히려 그 반대에...
-
두 개만 붙을 확률이 높은데 너무 고민되네여…
-
중시경건 외동홍 0
저 말 근절시킬 방법 없나요
-
누구재릅인지 티많이나나 사실재릅아님 뉴릅이에오
-
“외동홍” 8
본캠:발작 분캠:ㄹㅇㅋㅋ
-
터질것같이 빵빵한 엉덩이를 면접관님앞에서 빵딧빵딧♡ 흔드니까 바로 최초합시켜주더라
-
노는맛이라 함은 유흥... 술 클럽 이런거요 이런거 재밌는거 다 겪어보고 노는거...
-
자작문제 수학 3점 18
-
쿠팡 택배상하차말고 다이소 상하차 어떰?? 2시간 파트타임인데 무서워서 지원못하고있는중,,,ㅎㄷㄷ
-
이거 알면 천덕
-
생윤함풀어봐야지 0
흐흐
-
2웡: 수분감 벅벅, 뉴런 발췌수강 (수2,미적 그래프,적분들을예정), 러셀 고트...
와 진짜 칼럼글이네
7ㅐ추 누름
와
이걸로 도형정복하기..
으흐흐
일단 개추부터
저 3번문제 드릴드문제랑 똑같은데
아 살짝다르네
교육청이에요
고2 29
저문제 올리신분 게시글 댓글 ㄱㄱ
브라마굽타 검색해보니 이 사람이 0 발견한 사람이구나
잘읽었어요! 감사합니다 Step3에 AC*sin(beta) 이부분 AC가 아니라 AD아닌가요?
맞네요 감사합니다