생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
서울대 간호 경쟁률 1대1(3명 뽑는데 3명지원) 수능성적은 2 3 4등급이드라...
-
저는 이전부터 등급이 낮아도 실력이 있다면 남을 가르쳐도 문제가 없고, 오히려 배울...
-
이미 잘하는데 더 하려니까 좀 그렇네 흠..
-
메가님 가심?? 3
의도치 않은 탈릅 ㄷㄷㄷ...
-
서울캠도 제발
-
오늘도 학원알바 0
에휴 돈이나 벌자
-
언제부터 신청하는거에요? 시간이 공지되어있나요?
-
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
메디컬 욕심은 사실 애초부터 없었고 (그걸 노리기에도 양심없는 성적) 대학 졸업...
-
가정)28수능 이후에도 현 체재 유지 화1 58000명 -> 44000명 생2...
-
네시? 0
네시조발?마사카?
-
상상은 뽑은거같던데
-
이명학 신택스 알고리즘 하고있는데 이거 끝내고 기출 하는게 나음? 아니면 리앤로까지...
-
메가님의 장례식입니다 20
벌점 200점 받고 산화하셨대요 조의금 받습니다 의도치 않은 탈릅이라고 전해달라네요
-
제1원인=원인없음 진성난수=원인없음 제1원인=진성난수 제1원인으로서의 진성난수가...
-
시발점이랑 마플시너지 같이 병행하면서 해서 설 전까지는 두책 모두 진도가 다...
-
노베이스 수학 4
몇년만에 공부다시해서 노벤데, 강의랑 과외중에 뭘 선택할 지 추천 부탁드립니다....
-
지듣노 0
이거 아는 사람 없나
-
조발의 역사를 써보자
-
과외쌤들 다 그래서 나이 많으신 분들임 핫하
-
처음 할때 step 2푸셨음뇨..? 풀으란 말도 있고 2회독때 풀라는 말도 있던데
-
예이
-
정시 준비하는 고2인데 수학 풀때 고2 기출은 안푸는게 좋을까요?
-
아니 성과 사랑의 윤리 보부아르 듣다가 무한 버퍼링 걸리네 씨펄
-
선착순이에여? 아니면 접수하고 그쪽에서 성적대로 자르나여?
-
그 사람이 바로 나에요 굵어서 좋던데
-
이런건 왜 하는건가요? 저도 의대 증원 반대하지만 아무리 생각해도 이건 아닌거...
-
[칼럼]생1, 당신이 가계도/돌연변이를 버리면 안되는 이유 2
오랜만에 칼럼을 쓰게 되었네요. 오늘 할 이야기는 생명과학1의 준킬러에 대한...
-
일단 여자임 ㅇㅇ
-
[속보]尹 “부정선거 음모론 제기 아니고 팩트 확인 차원” 3
[속보]尹 “부정선거 음모론 제기 아니고 팩트 확인 차원”
-
올해 수시로 대학 갔고.. 정시로 옮길생각을 하고있습니다. 농어촌 특별전형 해당이...
-
스틱 쓸모없다 +) 전기차는 기어가 사실상 없다. 진짜 필요없ㄷㅏ
-
이상기후머냐 0
개더운데
-
이거 한번 쓰면 못벗어남 ㄹㅇ
-
대학은 꿇리지만 않을정도로 나오면 됨 숙대정도? 성격 좋고 모자 잘어울리는 여자가 이상형이에요
-
[속보] 국회측 "尹 부정선거 주장 방치 안돼…헌재가 제한해달라" 1
연합뉴스TV 기사문의 및 제보 : 카톡/라인 jebo23
-
대학생 대상 홍보 | 교육협동조합 Topick 4기 모집 0
‘동덕여대 공학 전환’, ‘계엄령과 내란죄’ 소모적인 논쟁에 지쳤다면? 교육...
-
2주컷 가능한걸루요 시발점 들어가기전에 들으려구요
-
대학커뮤니티 노크에서 선발한 인하대 선배가 오르비에 있는 예비 인하대생, 인하대...
-
볼펜은 역시 8
잉크가 콸콸 넘쳐 흐르는 볼펜이 쓰기 좋음
-
ㅇㅇ
-
ㅇ
-
나를 믿는 나를 믿어요 45
'나를 믿어줄 너'가 되어주실 분을 구해요
-
ㅇ
-
사문 1년간 한 컨텐츠 16
개념 5회독 기출 1회독 n스킬 찍먹 10지선다 2회독 2024 리바이벌 1 2...
-
핑프 ㅈㅅ합니다. 원래 과탐 하려다가 사탐으로 바꿔서 재수 하려는데 공대나 수의대...
-
정답은 내가 좋아하는 나 그런 거 아닐까요
-
오늘의 식사 현황 0끼 유지중 뜨면 먹겠습니다