sqrt(2)의 근삿값을 찾아보자 !! ㅎㅎ..
x^2-2y^2=1의 자연수 해 x,y를 생각해보자 ㅎㅎ.
그러면 x,y가 커질 수록 sqrt(2)=x/y에 가까워질 것이다. (1의 힘이 약해질꺼니까..)
그럼 큰 x,y를 어케 찾을까.
우선 ㅈㄴ 작은 x,y를 찾아보자.
그럼 금방 (x,y)=(3,2)를 발견할 수 잇다 ㅋㅋ.
이 때 윗 식을 대충 분해해보면 1=(x+sqrt(2)y)(x-sqrt(2)y)을 만족하면 되는데
양 쪽을 제곱해보면
1=(x+sqrt(2)y)^2(x-sqrt(2)y)^2=(x^2+2y^2+sqrt(2)*2xy)(x^2+2y^2-sqrt(2)*2xy)
즉, (x,y)의 해로부터 (x^2+2y^2,2xy)라는 해가 새롭게 생성됏다. 크킄
당연히 다시 생긴 해가 원래 해보다 ㅈㄴ 큼을 알 수 잇다.
이걸 조금 해보자 그럼 초기 해 (3,2)에서부터
(3,2) -> (17,12) ->(577,408)
즉, 우리는 577/408이라는 sqrt(2)에 매우 근접한 값을 얻어냇다. (당연히 더 하면 더 할 수록 더 근접해진다.)
(참고로 577/408은 1.41421568628...으로 벌써부터 진짜 ㅈㄴ 비슷하다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일요일에는?? 13
신중하게 투표해주세요
-
나도 고대 스나쓸때 4칸애들 다 쫄아서 도망갈줄 알았는데 0
컷이 ㅈㄴ짜다는걸 알았는지 도망간사람 거의없더라
-
김재하 수학 0
1년 들을 수 있는 패스는 안 파는 건가요?
-
옮창만 남앗구나 9
그리고 왜 오늘 일요닐이냐..
-
설치컷 ㅈㄴ 높더라 ㅇㅇ..
-
ㄹㅇ 나는 너무 순수해서 뻘소리를 할수가 없음 뻘소리로 관심좀 받고싶은데
-
보통 영어도 포함함요?
-
2.5가 정배죠? 서울기준?
-
자야돼.. 2
내일 8시에 일어나야한다고..
-
6개월 이상 찾는다는데 2~3개월만 일하고 싶어서 못 넣은 적이 매번임
-
이 넘 아깝다… 계속해도 답 없는 물리에 하루 공부 시간의 절반씩 투자하기도 하면서...
-
이웃광고 이거 ㄹㅇ 좋은듯 확실히 문의많이들어와
-
내일 스타듀밸리 10시간 해야함.
-
오지훈 기출분석 틀린 문제만 들으려고 하다가 강의 하나도 안듣고 다 풀어버림 그냥...
-
새벽에온다 오전에안오고
-
점공안한애들한테 문자나 잔뜩 보내지
-
가사 개숭함 저런 곡인지 몰랐었는데
-
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
김동욱 1
슬슬갈게요
-
알바앱보면 사장이 원하는 기간이 있잖아요 혹시 군대같은 어쩔 수 없는 사정으로...
-
오히려 야스씬 없는 순문이 있나 싶을정도임
-
싸우는거 얘기하는건데 이상한 생각하신거아니죠?
-
♚♚수능의 시발☆점♚♚입실시$$전원 수능만점@@수능점수획득기회 9
어그로는 아닌데 죄송합니다 열품타 홍보글 좀 쓰겠습니다...
-
아놋.
-
잘 키워줄게밥은 안 줌
-
하아
-
강대 재종 질문 1
강대 내가 원하는 쌤 넣으면 들을 수 있는건가요? 분위기는 어때요?? 아는애들 많이...
-
우웅 3
ㅋ
-
컴공 일기265 12
https://school.programmers.co.kr/learn/courses/...
-
ㅁㅌㅊ?
-
존나 싸워;;;;;;; 님들 에타도 이래?
-
휴 긴장됐어...넘쎄게부르는건아닌가..
-
안녕하세요 6
-
백호쌤 썰 5
나는 17대 1로 싸운 이야기 첫사랑 이야기 뭐 그런거 안할거야~~ 이렇게 말하던데...
-
수학강사이미지 제외
-
그 사람 연관 검색어 보나요?
-
한국사 책 펼쳐보지도 않았음 지금까지 쭉 평가원1
-
일어서야해..
-
감점 겁나 크더라.. 올해 수능 보시는분들 공부 조금씩 미리 해두셈
-
난 가야할 때를 모르겟어
-
이투스 패스 결제완료 10
박모씨 강의 수강 준비 완료
-
상실의 시대 14
합법적 야설 goat 제 3인류도 좀 있었던 기억이
-
이때 교수님들 ㄹㅇ 잡아와야함 문제 겁나 yummy 하네
-
한국수영탐탐 7
1+6+4+4+2+0
-
유혹의 기술 18
으흐흐흐
-
에휴이.. 8
에휴..
-
제가 아는 사람중 최고였어요..
-
전 딱히 없음..숫자들은 그 자체로 모두 아름다움
이정도면 열심히 썻어..
스쿼트라
squirt요???
어휴
에...
파이 근삿값 구하는 급수식은 봤는데
쌍곡선 점근선이었군요