궁극의 가설
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안녕하세요 롤스가 운(천부적 재능같은것),운의 대한 결과물에 대한 응분의자격이...
-
제곱근 자작문제 2
수학 모의고사 만들면서 만든 문제인데 완성도가 그닥 높지 않아서 공유합니다. 발문이...
-
아 뭐야 못봤다 3
너무 아쉬운데
-
만약 중국이 지금보다 더 떡상한다면. 당연히 장기적으로는 미국이 억제를 어떻게든...
-
귀여운 칸나빼고
-
ㅇㅈ 아님 9
내 보물 ㅇㅈ
-
낚시하러가고싶네 1
그런거네
-
즐겁다 삿포로 10
-
행복하네 3
ㅇㅁㅇ
-
안믿는사람끼리 지옥가서 쿠데타 일으키고 하늘나라도 민주화시켜놨을거같음 걱정마셈 ㅇㅇ...
-
. 42
이게 벌써 5년 전인가
-
7기 아웃풋 8기 아웃풋 사실 별 차이 없음
-
맞팔 안구함 2
ㄱㄱ
-
반박하려면 보닌보다 덕코 많아야됨
-
Mbti맞춰봐요 7
뭐같음
-
학원물. 남주는 친구 없고 여주는 씹인싸. 서로 좋아하는데 여주가 개씹혐성츤데레라서...
-
나의 앰비티아이 21
그건 비밀이란거야
-
진짜 자러감 13
다들 굿나잇이다.
-
고3때 열등감 때문에 노베로 시작해서 재수까지 했는데 아쉬움이 너무 남는것...
-
커뮤에 확실히 2
istp랑 intp가 많은듯
-
사탐런 질문 3
이제 고3 올라가는 07년생입니다 작년부터 사탐런에 대해 얘기가 많더니 지금은...
-
iStJ 있나요 1
-
임신서기석 10
ㅇ.
-
나도 칼럼 써봄 22
풉
-
스토리짜도 다 흔한 클리셰범벅이야
-
좋아하는 소설이 7
완결직전이라는 것은 너무 슬퍼요
-
이 오르비언이 현생에서 착한 사람인지 아닌지 대충 알거같음
-
조선시대에 공주였던여자애가 궁에서일하는궁녀와사랑에빠짐 둘이사랑해서 은밀하게...
-
참고)고인물들은 안 봐도 됨 화2가 처음이거나 미숙하면 농도 관련된 문제를 풀 때...
-
대신 틀 인정하는 거임
-
대한민국 중앙지검 부장검사 대유빈
-
야수의심장으로 한 -30퍼까진 괜찮다고봄
-
너무 병신같나..
-
무물보 17
해주세요
-
이거 코어랑 모어 합치니깐 1000문제인대ㅈ버그임?
-
어 방금 생각남 ㄹㅇ내머릿속애서나가.
-
확통이와 미적이의 공통 점수차가 상대적으로 적어서 그런거죠??
-
옯뉴비임
-
아주 기부니 좋음 Definition 말하는거임
ㅋㅋㅋㅋ
철학과ㄱㄱ
와...정말 놀라운 사고의 연쇄입니다
inf{1/10^n : n is in natural} = 0인데
이해가 안 감 저 부분
0.000...0001의 존재를 받아들여야 함
미안한데ㅜ수학적으로 0으로 다가가는 수열의 하한은 0임이 알려져 있음
반박할 거면 나 말고 대한수학회에 민원 넣으셈
최소양수라는 건 실수의 완비성 때문에 없음
0.000...0001 이라고 적어줘도 못받아들이는 이유가 뭐임
실수의 완비성 때문에 그것보다 작은 양수가 항상 존재함
무한의 개념은 단순히 점 몇 개 찍는다고 표현할 수 있는 게 아님
실수의 완비성은 공리라는데? 공리 부정해도 무모순인거 내가 예전ㅇ 말함
그런 게 있다면 엡실론-델타 논법도 틀림
코시 무덤가서 코시랑 얘기 좀 하고 오셈
엡실론 델타가 누군진 몰라도 내가 개박살 내주겠음
그니까 나 말고 대한수학회나 코시하고 상담하라고
진짜 수학과 발작 버튼은 여기 있었네
https://orbi.kr/00071290836
실수의 완비성은 공리라서 부정해도 무모순임
그러면 너가 말하는 최소 양수를 반으로 나눈 수는 뭐임
걔는 확실히 그 수보다 작고, 양수인데
이미 무한한 0이 있어서 뭘로 나누든 무한한 0이 있음
ㄴㄴ 너가 끝을 맺은 순간 그건 무한이 아닌 거임
무한은 수로 표현 불가능한 상태이지 수가 아님
미안하지만 무한의 정의부터 다시 공부하고 오렴
현실부정 단계인 거 보니 논리적으로 반박할 수단이 없구나
다른 거 가져와라 이제
그렇다고 그 부정이 공리가 될 순 없음
자명한 진술은 증명할 수 없다는 명제 때문에 공리의 부정이 무모순인 거지 공리가 틀렸다는 게 아니므로 너가 공리를 부정하더라도 원래 공리는 세계에 남아있음
공리를 부정해도 무모순이면 공리가 거짓 not 공리가 참임
0.000...0001 이 왜 수가아님? 실무한 하면되잖아 상태가 아니려면