우주
https://virtualmath1.stanford.edu/~conrad/diffgeomPage/handouts/trivline.pdf
Brian Conrad라는 앤드류 와일즈 제자인데다가 현우진 쌤 학부 지도교수인 정수론 쪽 수학자인데, 예전에 학부 미분기하 수업을 한번 진행했을 때 올린 수업 자료. 제목은 "Why the universe cannot be S^4" 라는 상당히 어그로성이 짙은 제목의 문서인데, 기본 세팅은 spacetime (smooth Lorentzian 4-manifold, 다시 말해서 signature 가 (3,1)인 pseudo-Riemannian manifold) 이고, 블랙홀 같은 singularity는 없다고 가정한 상태. 대수하는 사람 답게 분명 미분기하지만 아주 미분기하 스럽지는 않고 (예를 들어 curvature나 connection form같은게 등장하지 않음) 오히려 (선형)대수적인 면모를 부각해서 써놓음.
설명은 파일의 첫 페이지 Corollary 1.2 이후에 써있음. S^4는 simply connected이고 S^4는 non-vanishing vector field를 갖지 못하기 때문에 (Hairy ball theorem) S^4는 Lorentizian manifold가 될 수 없다 (Corollary 1.2) 이렇게 설명.
Corollary 1.2는 Theorem 1.1에 의해서 나온다고 써있는데, Theorem 1.1은 그 자체로 흥미롭고 직관적인 정리이기 때문에 따로 적어봄.
Theorem 1.1. Let $E\to M$ be a smooth vector bundle over a manifold $M$. If $E$ admits a pseudo-Riemannian metric $g$ with signature $(n_{+},n_{-})$, then there exist smooth subbundles $E^+,E^-\subset E$ with ranks $n_{+}$ and $n_{-}$ respectively such that $g$ has positive-definite on $E^+$ and negative-definite on $E^-$. In particular, the natural bundle map $E^+\oplus E^-\to E$ is an isomorphism.
원래 증명 안 보려고 했는데, 증명에서 Grassmannian을 써서 보게 됨. 정확히는, Theorem 1.1은 fiber에서는 자명하기 때문에, 테크니컬한 부분은 fiber들에서 decompose가 된 것들이 잘 짜맞춰져서 smooth subbundle들로 쪼개진다는 것을 보이는 부분임. 이 과정에서는 보통의 경우에는 smooth frame을 잡고서 M위에서 point들을 움직였을 때, local expression들이 smooth 하게 vary하기 때문에 smooth 하다고 하는데, 여기서는 Grassmannian을 이용해서 증명함. 나만 처음본 것일 수도 있는데, 이렇게 증명하는 것은 또 처음봄. 이것에 대해서는 사실 Conrad가 맨 처음 문단에 써놨는데, "pseudo-Riemannian manifold이기 때문에 기존의 Riemannian 에서 하던 직관적인 작업들이 잘 되지 않을 수 있다" 이렇게 설명함. (이래서 pseudo-Riemannian manifold가 어려움)
기본 아이디어는, 앞서 말한 대로, 각 fiber마다의 decomposition을 한 다음에, quotient를 해서 positive definite한 파트만 살려놓으면, $G_{n_+}(\Bbb R)$ 에 한 점이 대응됨. 따라서 $M\to G_{n_+}(\Bbb R)$로 가는 set map을 만들 수 있는데, 문제는 이것이 smooth 한지 체크하는 것. 이걸 어떻게 보였는지 궁금하면 노트를 한번 보길. (아무도 안보겠지만!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가 쓴 건 폭나고...
-
나도 슬슬 갈까 20
다들 건강히 지내라
-
선택의 순간 1
전 아직 우매한 20세임을 감안해 주십시오. 지금 드는 생각은 학사 취업이냐 대학원...
-
비슷한 난이도의 기출 있음?
-
일욜은 물리데이 아침부터 달려서 힘과 가속도 개념기출까지 다 끝내야징
-
뭐지다노 12
독서실에 키보드 놓고 다니는데 어떤 사람이 내 키보드를 쓰고 있음 뭐지다노????
-
수학 질문 0
이제 수분감 step2 시작했는데 이거 끝나고 한 2,3월까지 기출 한 번 더 하고...
-
이나경 어린시절 2
프로미스나인 나꼬대장님 자연미인 이나경 유치원시절→초등학생시절→중학생시절
-
통합선발때문에 뽑는 인원도 줄었는데 미치겠네
-
밥먹어야되는대 4
귀찮네
-
다 어디감 8
다 나감? 다 인ㄲ싸임? 다 레전드기만러임? 하아
-
나 지금 시간에 활동 하는디...
-
공스타 공개 8
@study_flover
-
20~22번도 못 풉니다.. 접근은 다 하는데.. 시발점 다시 들어야하나요 양승진...
-
사실 본계가 부계가 되고 공식 본계를 더 늦게만들어서 ㅋㅋㅋㅋㅋㅋ
-
미개봉 새상품 4
=본인
-
연고 모든 과 서성 상경 & 사과계 한양 상경 정도가 유의미하다고 생각하는데 맞져?
-
산스장이 잇음. 자유롭게 출입 가능하고 기구들 그냥 잇음 가난한 고딩을 위한 곳임...
-
제가 정시로 아주대랑 에리카를 넣엇는데 집이 부산이라 다른지역으로...
-
대통령이 그냥 흔한 공무원도 아니고 국가원수인데, 그럼 당연히 자신과 뜻이 다른...
-
비밀 ? 0
?
-
두려워졋서
-
사탐런... 1
현재 생지러인 삼수생입니다... 2025 생1 6 9 수능 1 2 3 등급 맞은...
-
울면서 비추 눌렀다
-
수시러인데 이정도이면 정시의대 어느정도 가능한가요? 2
수시러인데 이정도면 정시로 어디 의대까지 붙을 수 있나요? 설마 납치는 아니겠죠..
-
맞팔 해주려나..
-
학교 다닐 때 공부량이랑 성비 어떻게 되는지 궁금하고 취업 난이도나 취업 방향도 알고 싶습니다!
-
거꾸로해도 이름이 똑같잖아여
-
투투 0
과연
-
하하
-
골목안 배꼽을 주제로한 변주곡 사막을 건너는법 매우 잘생긴 우산 자전거도둑
-
최저는 맞출 수 있을거같은데 학추가 서류20을 보더라구요 생기부를 서어서문으로 써서...
-
걍 다 ㄴㅈ임 0
칫
-
나는 숫자 세는거 밖에 못함. 1,2,3,..
-
이거 ㄹㅇ 잼밋음
-
덕코 탕진.. 6
흠
-
아 왤케 어색하지
-
그림 안 그리면 못 풀겠음
-
. 2
.
-
이렇게 네임드 많이 배출한 과가 있나?
-
연속함수가 아니라 그런건가?
-
수강신청 며칠전에 오티하는거 갔다와서 후딱 짜면 안됨?
-
올해 원서구조가 얼마나 기형적이냐면 원래 가군 연고 나군 서성이 극정배인데 연대에...
-
세계에서 가장 ~~한 ~~
-
아니다 밥 먹고 와서 해야지
-
옯스타 홍보 하겟습니다 11
뇨뇨쿄 뭐시기 입니다
-
표점차 보정의 공정과 그것이 입시 결과에 반영되는 것은 다름 4
말 그대로 내년 확통이 기탄수학으로 나오고 미적은 레전드 문제를 갱신해 20점차...
-
전 재수생임미다 3
N수생 이기기 힘드니까 제가 재수생인척 하겟습니다 작년 수능 망하고 이번 수능 드갑니다
-
1.고집 쎈 여자 2.술 좋아하는 여자 어디가 더 비호감 많나요?
첫번째 댓글의 주인공이 되어보세요.