수학황님들 21수능 나형 30번 질문좀요!! ㅠㅠ
g(x) 가 f(x) 의 변곡접선인 (변곡점 x=0) 케이스는 왜 안되는건가요?? 이렇게 풀면 미지수 3개에 식 4개 나오고 막 이상해서 확실히 오류 있는 풀이라는걸 느끼긴 했는데 뭐가 오류인지를 모르겠어요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수시충은 그런 거 하다가는 저격 먹을까봐 못한다는 거임 나는.. 진또배기.. 저능아다..
-
좀따 물류쏟아질거 생각하면 먹어둬야함.. ㄹㅇ
-
안녕히주무세요 4
내일뵈요
-
그래야 미련이 없을 것 같아…
-
이거면 멧돼지도 잡을 수 있을 용량인듯 그나마 정신있을때 잘자요~
-
굿모닝 1
아 물론 자러가는 인사 ㅎㅎ
-
30초 광고 그런거 ㅇㅇ 완전 대박아니야?!
-
진학사 2
Test 진학사
-
인강 둘 다 같이 병행해야되나요? + 기출도 같이 병행해야되는지.. 궁금해요
-
저는 별거 없네요 ^^
-
수상해
-
아직도 내 앞에 들어올 사람이 남아있겠어?
-
우리 학교에 자칭 엉덩이 감별사가 있었음요. 그 친구는 쉬는시간마다 돌아다니며...
-
너무 고민되는구만….
님말대로 x=0에서 변곡접선이라 칠게요.
.f(x), g(x)의 조건에 의하여 f(x)-g(x)=x^3이겠죠.
h(x)가 미분가능하므로 연속이겠죠? 그럼 f(1)-g(1)=1이겠네요.
우극한도 똑같이 조사하면 f(1)+g(1)=1이겠네요. f(1)=1, g(1)=0. 여기까지는 뭐 문제 없네요.
미분계수도 동일하게 조사해볼게요.
x=1 근처에서 x^3>0이므로 절댓값 그대로 벗겨내도 되요.
f'(1)-g'(1)=3, f'(1)+g'(1)=3에서 f'(1)=3, g'(1)=0
여기서 문제가 생기네요. f'(1)=3은 문제가 없지만, g'(1)=0은 g(x)가 1차함수라는 조건에 위배되네요.
g(x)가 일차함수라 했으니 g(x)=ax+b라 할게요. 단, a는 0이 아닙니다.(1차함수이므로!!) 물론 a, b는 상수입니다.
g'(x)=a이고 g'(1)=0이므로 a=0이 될겁니다. 그럼 g(x)가 1차함수라는 조건에 위배되겠죠?
애초에 g'(1)=0이 될수 없는겁니다.
감솨 감솨