전글 정답
정답: O(존재한다)
임의의 n차방정식에 대해, n차방정식의 근을 x1, x2, ...xn, 최고차항을 a라 하면 판별식은 a^(2n-2) * (x1-x2)^2*(x1-x3)^2*(x1-x4)^2*...(x1-xn)^2*(x2-x3)^2*(x2-x4)^2*...(x2-xn)^2* ...... (xn-1-xn)^2, 즉 겹치지 않는 1에서 n 사이의 자연수 쌍 i, j 각각에 대해 (xi-xj)^2의 값을 모두 곱한 것으로 정의됩니다(사실 아니지만, 일단 동치니까...)
이 식이 글에서 언급된 판별식의 조건을 만족시킴은 쉽게 확인할 수 있고, 아주 열심히 노가다하면 근과 계수의 관계를 통해 오차방정식의 판별식을 손으로 구하고, 계수에 대해 다항식으로 표현됨을 확인할 수 있습니다. 물론 군 이론을 바탕으로 한, n차방정식에 대한 일반적 증명도 존재합니다.
당연하게도 가장 간단한 이차방정식에서 판별식 a^(2*2-2)*(x1-x2)^2 = a^2*(x_1^2 - 2*x_1*x_2 + + x_2^2) = a^2*((x_1+x_2)^2-4x_1*x_2) = a^2((-b/a)^2-4*c/a)=b^2-4ac입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인강 둘 다 같이 병행해야되나요? + 기출도 같이 병행해야되는지.. 궁금해요
-
수상해
-
아직도 내 앞에 들어올 사람이 남아있겠어?
-
우리 학교에 자칭 엉덩이 감별사가 있었음요. 그 친구는 쉬는시간마다 돌아다니며...
-
너무 고민되는구만….
-
출근 준비하면서 뮤비 보고 점심 먹고 뮤비 틀고 자고 자기 전에 뮤비 보고 잠
-
진짜임
-
씨발 ㅋㅋㅋ
-
음주르비 8
저번에 하네다 공항서 사온 산토리 로얄 하이볼을 타자 애니보며 먹자
-
정화하기 3
맨드레이크 아님
-
물론 제가 수시러라서 그렇게 느끼는 거일 수도 있지만요 큰 꿈과 로망 생각과 목표를...
-
빌리진은전설이다
-
에휴
-
어이 논술 왜 나는..
-
9시~10시 기상 해보겠슴니다
-
유빈 유저는 들어라 11
강기분 독서 2권, 문학 2권과 익힘책을 빨리 올려라 한번에 제본하게...
이정도돼야 의대가는구나
아니 판별식은 왜 존재함..
근데 5차방정식 판별식 이런건 의미가 뭐죠 이차방정식같은건 직관적으로 느낌이 오는데
전글에 대충 써있는데, 허근이 2개, 6개, 10개...면 음수고, 0개, 4개, 8개... 면 양수에요
식을 뜯어보면, 그럴 수밖에 없게 구성되어 있어요