이거풀어보새요
난 너무 찝찝하게풂.
개인적으로 뭐처럼 보이는거 직관으로 미리 찍어놓고 그게되는이유를 논리 끼워맞춰서 풀어내는거보다
정공법으로 논리적용해서 정방향으로 뚫어버리는걸 좋아하는데
그러질못함
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
554는 4
에반가요 ㅠ… 6칸 하나는 써야겟져
-
잘자요 5
재밌는 꿈꾸세요
-
투데이 왜이러냐 11
심각한데
-
문득 궁금해지는데 각각 ㅁㅌㅊ인가요?
-
오댕이 설잠 ㄹㅈㄷㄱㅁ
-
둘중 뭐가 나음ㅋㅋㅋ 11
1번 방안2번 씹스나 방안 2번은 너무 도박임?
-
눈아 감기지 마라
-
탈모걸린대요 다들 잡시다
-
칼럼 발로 깐적도 있어요 그때 고소한다고 난리도 아니었어요
-
약빵의 기준 3
5칸 4칸 << 붙으면 약빵인가요?
-
앞으로 성장해나가면 다 거름이여
-
4시에 자야지 0
슬슬 버티기 힘들다
-
연, 갑종이자배당소득세, 꼬1기, 구쏘개2세<< 이사람들 언제옴...
-
진짜 어케 탈출함
-
다들 친하고 편안한 가족 같은 분위기인 것 같아요!! 모두 따뜻한 연말 보내세요~
-
. 0
.
-
덬코 어떻게 쓰나요 17
알려주실 분~?
-
전 2022년
-
....
-
4천덕 뿌림뇨 9
선착 4명한테 1000덕씩 드림뇨
-
마치 물1선택자와 화1선택자가 서로 우리 표본이 더 고였다면서싸우는 걸 보는 느낌임
-
. 7
.
-
오르비 현생 둘 다 엄청 얌전하게 사는편인데
-
근데 썸이 뭐임 5
진짜 모름
-
맞팔구 3
맞팔구해요
-
첫 연애 썰 11
고딩 때 학원 같이 다니던 친구한테 연락이 왔었음 뭐하냐고 밥 한끼 하자 하더라....
-
덕담해드림
-
@슈냥 6
욕해달라는데요?
-
ㄹㅇ 그니까 귀여운 프사인 옯붕이는 귀여운 거 아니면 인증하지마셈
-
그래서요? 13
어쩌라고요 씨발아 ㅋㅋ 갑자기 지나가던 선량한 오르비언한테 시비털기 성공
-
똑똑 1
다들 깨어계신가여? 덕코 좀 주새요
-
탑 챔 추천좀요 마오카이 제이스정도만 하는데 히트다 싶은 사파픽 없나
-
졸리다 졸려 0
하암
-
톡톡톡 0
니 맘을 톡해줘꼭꼭꼭 내게 약속해줘
-
우리 모두 열심히 오르비를 하여 올해의 마지막 일요일을 즐기도록 합시다
-
난 애교 부리면 안 돼?
-
떡밥 안바뀌는 이유 ㅇㅇ 이미 밤낮 바뀐 사람이 많음
-
나좀쩌는듯
-
제가 표본 분석을 했을 땐 불합 가능성이 더 높아보이는데.. (55명 모집에 지금...
-
저희동네 번화가+일요일새벽인데 만ㄹ으려나요? 술 좀 드셔본 분들 알려주새요
-
모든고백은 위선이 아니면 위악이래요...
-
뿌잉뿌잉 5
메챠 카와이
-
약대인가요?
-
개발팀 일해라
-
그냥 궁금해서
-
ㅠㅡㅠ 젊었을때 진짜 고우시다
-
쪽지 2
쪽지 뭔가 뭔가임 익명으로써의 고백? 그런 느낌 오르비 시작한지 얼마 안되서 그런 듯
성관계요?
문제풀어보셈
화질 에바
다시올림요
32 ?
정공법 ㄱㄴ
ㄱㅁ
설명의 편의를 위해 e^(ax²+bx+c)=g(x)라 하겠음
f(x)는 (가)에 의해 (2, 0) 점대칭
(나)에 의해, 2|f'(x)|≤f'(8)-f'(0)
x에 0과 8을 대입하면 f'(0)≤0, f'(8)≥0
부호를 감안해 절댓값을 씌우면
2|f'(x)|≤|f'(0)|+|f'(8)|
따라서 |f'(0)|=|f'(8)|이며 이는 |f'(x)|의 최댓값임
f'(0)은 최솟값, f'(8)=f'(-4)는 최댓값임
g'(x)=(2ax+b)e^(ax²+bx+c)
g''(x)=(4a²x²+4abx+2a+b²)e^(ax²+bx+c)
f'(-4)가 f'(x)의 최댓값이므로
g'(-4)는 g'(x)의 극댓값, g''(-4)=0이며
g''(x)는 x=-4 부근에서 +→-로 부호가 바뀜
f(x)의 x=0에서의 좌미분계수가 g'(0)가 같으며
f'(0)이 존재하므로 f'(0)=g'(0)
따라서 g'(-4)+g'(0)=0
g'(x)는 x=-4에서'만' 최댓값을 갖고, 점대칭함수이므로 g'(-4)+g'(x)=0을 만족하는 x는 하나뿐임
이를 만족하는 x가 0이므로
따라서 g'(x)는 (-2, 0)에서 점대칭, -b/2a=-2
g''(-4)=0과 연립하면 a=-1/8, b=-1/2
f(0)=e^c, f'(0)=-e^c/2
f(2)=0이므로 f'(0)이 f'(x)의 최솟값임에 위배되지 않으면서 f(2)=0이려면 f(x)는 0~2에서 1차함수임
정적분값을 이용해 c를 구하면 c=2
따라서 c/ab=32
사진을 찍을 수 없고 패드나 노트처럼 필기가 용이하지도 않아서 부득이하게 글로 풀어썼음
정성추