미적분 자작문제(1200덕)
첫 정답자 1200덕 드리겠습니다!
0 XDK (+10)
-
10
-
특히 현역 최저러위주로... 내년에 화1이랑은 선택자수 비벼질거같음ㅋㅋ 화1 강준호...
-
.
-
과탐가산 20퍼 박았으면 좋겠음 ㅅㅂ 사탐으로 여기이상가는건 아니지 이건 아니야
-
안쓰긴했는데 제가 4칸 꼴찌였는데 점공계산기상 추합권이네
-
앞으로 국어는 어렵지 않고 항상 쉽게 나올까요?
-
그러하다
-
Wolf) 올해는 다르...지? ?? | 2025 시즌 오프닝 하이라이트 0
??? : 잘못된 협곡의 정상화
-
저번주 토욜부터 6
집에만 박혀있었야요
-
기 상 16
예이
-
칼럼이나 좀 찌끄려볼까 근데 이게 볼 사람이 있나 싶네
-
작수 3입니다 화작미적사탐이라서 지금은 수학에 쓸 시간이 많은 것 같습니다 이미지...
-
옛날 기출 노래와 이야기 이런 건 현장에서 만나면 진짜 빡세겠다 2
타 선지 중에 좀 더 확실한 걸로 답 내는 문제인데 5번 선지를 현장에서 아니라고...
-
모킹버드 같은데서 문제풀면 코인 같은거 받는 시스템 만들어서 수학황 과학황 국어황...
-
1학기엔 3학점만 듣고 2학기엔 아예 휴학할 건데 시간표도 어떻게 짜야할 지도...
-
생윤 vs 사문 5
사탐런하기에 뭐가 더 나을까요? 암기 잘한다 = 생윤 계산 잘한다 = 사문 걍 이건가요?
-
학교에서 친구가 없어서 쉽게 안 됨
-
20만원이 부족한데?
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
라는 부담스러운 말은 하면 안되겠죠? 선을 지키는 클린유저가 됩시다.
-
메모 0
어삼쉬사 수1, 수2 각각 다 끝내기 1월까지 아이디어 수1, 수2 다 끝내기 2월...
-
삼수vs삼반수 1
지금 사범대 과학계열 학교 다니고 있는 학생입니다. 작년 수능을 공부를 안하고...
-
25수능입니다.
-
사4=과1 5
제발 사탐황들한테 깝치지마셈 과탐은 그냥 발로 풀어도 다 맞춘다 내가 손으로 풀어서...
-
3등급일수도 있음?
-
고양이 보고가요 19
-
외박 후 복귀 0
운동 조지고 ktx 타러 하 가기싫다
-
한지 재밌긴한데 0
한번 공부 안하면 계속 놓게되더라 걍 내 성향 문제일수도
-
한완수로만 해도 아무문제 없을까요?? 아니면 세젤쉬같은 컴팩트한 강의와 병행할까요?...
-
점심여캐투척 8
음역시귀엽군
-
100점이 목표인데 풀커리랍시고 쉬운 n제 굳이굳이 풀기 ->쉬운 문제는 어려운...
-
91 99 2 87 99 가려면 얼마만큼 올려야하나요??? 전반적으로 올린다고 봤을때
-
내려쳐질때마다 기분이좋아요 내가선택과목선택영역1등급 개꿀벌임이증명되는느낌임 흐흐흐흐흐흐
-
걍 기출 벅벅 하니까 고1, 2 모고는 1 뜨길래 내 방법이 맞는 건 줄.. 근데...
-
원래 이런가요? 기출 처음 푸는데 4점짜리 30문제가지고 며칠씩 붙잡고 있네요ㅠㅠ...
-
그게 나야 바 둠바 두비두밥~ ^^
-
텝스 준비 방법 4
텝스 뭐 준비할게 있을까요... 영어 2라 기영은 피해야되는데
-
모든 과탐한테 긁히는 건 아니고 나보다 점수 확연히 낮은데 과4사1이다 개념량 반도...
-
언미물1지1 입니다. 6모 41231 9모 13233 수능 2(89) 1(97) 2...
-
과랑 성적 들고 오세요 메디컬+한약 제외 다 궁예 가능 * 개인의 의견일 뿐이므로 맹신 X
-
피파 5천억 팀 2
추천좀요
-
네
-
생윤 사문인데 사문 도표랑 타임어택 , 퍼즐 , 채점 문제 이런거 짜증남
-
얼버기 5
오늘은 날씨가 별루안춥네
-
잘 맞는거 고르면 그 과목 잘 볼 확률이 높고 국영수에 투자할 시간이 ‘더’생김.....
-
덕코내놧 7
내놧
-
고전시가 0
공부 어케해야함?? 내신처럼 어휘 달달 외워야하나 좀 많이 까먹었는데 김승리 풀커리...
-
557점 정도 나와서 그냥 공대 쓰거나 공대 자전 쓰면 양학하고 들어가는건데...
-
무슨 일이 있었던 건 아니고 갑자기 1월 초부터 미친듯이 무기력하고 우울합니다 정말...
-
제가 좀 내성적이고 말주변이 없고 아이들을 별로 안좋아하는데 그러면...
-
디지몬- power up이랑 포켓몬스터 오프닝 우리는 모두 친구 불렀음 ㅁㅌㅊ
이건 5다
ㅈ..정답..!
이게 뭐야
와 이걸 맞혀?
발문이 어디서 본거같은데
3월 가형 30번이었나
2018 9평?
f(x) = t√x + x(lnx - 2)
f'(x) = t/(2√x) + lnx - 1
|f(k) - g(k)| = g(k), f(k) = 0 or 2g(k)
lim(x→0+) f(x) = 0 이고 f(x)가
구간 (0, ∞)에서 증가하면서
y = |f(x) - g(x)|가 x = k에서 최소이므로
f(k) = 2g(k), f'(k) = g'(k),
g'(k) ≥ f(k)/k → kf'(k) ≥ f(k)
여기서 k = h(t)이면 kf'(k) = f(k)이므로
t√k/2 + klnk - k = t√k + klnk - 2k,
t²k/4 = k², k = h(t) = t²/4
→ h'(t) = t/2, h'(10) = 5
정확합니다!
저 g'(k)≥f(k)/k 는 어떻게 나온건가유..?
아니 제발 해설 좀 궁금해서 일상생활이 불가능해요....
다른 건 알겠는데 저 부등식이 평균변화율로 관계식 만든 건가요??
그래프 직접 그려보니, x=k에서 최소이려면, f(x)의 x=k에서의 접선이 0,0 을 지나야 하는 게 k의 최소네요...
그래프만 잘 그렸다면 바로 보였을 텐데 아볼 위볼 파악을 잘 해야 했네요...