전글 정답
계속 뻐기고 있으면 어차피 위상수학 이미 들으신 분이 와서 5000덕 가져갈 게 뻔하니까 걍 올릴게요
놀랍게도, 두 형태는 위상동형이 맞아요
위상동형의 직관적인 정의로는 이해가 힘들지만, ‘두 공간 사이에, 원함수와 역함수 각각이 연속인 일대일대응이 존재한다‘는 엄밀한 정의를 따른다면 알 수 있죠
좀 더 기하적으로 생각해 본다면, 저 팔찌의 형태는 정육면체에서 마주보고 있는 면을 정방향으로 이어붙인 공간과 같다고 생각할 수 있는데, 그렇다면 면을 360도 돌린 뒤 다시 붙인 공간도 결국 면이 정방향으로 이어 붙여진 상태니 같다고 생각할 수 있어요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
4반수 결정. 5
화이팅 좀
-
잘보기라도했으면모르겠는데 수능까지망하니뭐하고싶지도않음
-
정상인애를못봄
-
특히 고대 한양대 중대는 정시 2배 이벤트라는데
-
담임쌤이 올해 고대는 최저 충족률 때문에 최저 맞추면 거의 확실하게 붙는다던데 5
이거 믿어도 되나요
-
ebs가 정답이다 꺼져라
-
ㅇㅇ
-
왜냐면 친구중에 맨날 17로 찍는 애가 있는데 걔만 맞고 전 틀리면 배아플까봐...
-
어떻게 안될까요?
-
납치 당할수도 있을것같아서요ㅠㅠ 저는 식품영양학과 썼고 기하는 몰라서 기하 제외...
-
퉆 ㄱ 고른 이유도 알려주면 감사
-
기하하하하 5
-
서울대도 포기 못 하겠고 메디컬도 포기 못 하겠는데 설치부턴 점수가 안 되고..
-
사탐 추천받음 5
국어, 수학, 물리 잘하고 지구 못하는 사람에게 잘 맞는 거로...
-
고속 질문 4
고속 연초록이면 거의 붙는건가요...?
-
11번이 80점대고 1번이 90점대인데 그 1번이 2411임 -> 2411이 젤...
-
표본 수가 적다는게 가장 큰 이유고 기하를 추천하는 사람들은 기하랑 잘 맞는 사람일...
-
왜냐면 기하 1컷은 88 절평이거든
-
사실 대전보단 꿈돌이를 더 사랑해
-
의미 있나? 그냥 대충만 잡아놓긴 했는데 이걸로 담임이랑 정시상담하는거 의미 잇냐?
전글 못 봣는데 정답글은 봣네
자르기로만 같아질수있는 두 형태가 위상동향이 될 수 있다는건가요..?
결론부터 말하면 맞아요
예를 들어, 세 부분으로 나눠져 있고 시계 방향으로 순서대로 빨강, 초록, 파랑이 칠해진 원 모양 끈을 생각해 본다면, 2차원 평면에서 이 끈을 자르지 않고는 시계 방향으로 빨강, 파랑, 초록이 칠해진 끈으로 바꿀 방법이 없어요
하지만 3차원에서는 당연히 뒤집어서 바꿀 수 있으니, 결국 위상동형의 개념이 물체가 있는 공간에 의존하는 상황이 되요
이런 상황을 피하기 위해서(물론 다른 이유들도 많지만), 위상동형은 글에서와 같이 정의해요
노초빨에서 빨초노로 그냥 바꿨는데 안자르고 그냥 비틀어서 바꿀수있는것 아닌가요?..
애초에 2차원이니까 1차원적 끈이겠죠
끈의 내부를 비틀 수는 없고요
더 좋은 예로, 3차원에서 끈을 사용한 매듭(수학적으로 매듭은 우리가 일반적으로 생각할 매듭을 만든 뒤, 반대쪽 끝을 이은 닫힌 곡선으로 정의되요)은 3차원 내에서 연속적인 변형으로는 풀 수 없지만, 4차원 공간에서는 항상 풀 수 있어요
간단하게 저 닫힌곡선팔찌는 현실에서 자르지않고도 뒤집힌모양을 만들수있으니 위상동형인 게 당연하다고 생각한건데 복잡해서 잘모르겠네요