Curl-Div
Curl-Divergence lemma라고 함수열의 수렴에 대해서 이야기 하는데 희한하게도 Curl과 Divergence에 bound를 주는 것을 가정으로 하고 있다. 직관적으로 이게 어떻게 연관되어 있는지 잘 와닿지 않는데, 일단 statement 먼저 보자.
The Curl-Div lemma. Suppose $u_m\rightharpoonup u, v_m\rightharpoonup v$ weakly in $L^2(\Omega;\Bbb R^3)$ on a domain $\Omega\subset\Bbb R^3$ while the sequences $\operatorname{div} u_m$ and $\operatorname{curl} v_m$ are relatively compact in $H^{-1}(\Omega)$. Then for any $\varphi\in C^\infty_0(\Omega)$ we have
$$\int_{\Omega}u_m\cdot v_m\varphi dx\to\int_{\Omega}u\cdot v\varphi dx$$
as $m\to\infty$.
여기서 나오는 $\cdot$ 은 Euclidean space에서의 내적을 의미한다. Statement의 의미를 다시 말하면, 미분에 bound를 줘서 nonlinear expression 의 weak continuity를 얻어내는 것이다.
이걸 differential form의 언어로 바꿔서 표현을 하기 시작하면, 이 curl과 div에 boundness 조건을 주는 것이 weak convergence에 어떤 영향을 주는지 좀 더 직관적으로 드러난다.
$M$을 closed oriented smooth $n$-manifold라고 하자. 이제 $u_m\rightharpoonup u, v_m\rightharpoonup v$ in $L^2$ such that $(d^* u_m), (dv_m)$ 들이 $H^{-1}$에서 relatively compact라고 하자. 이 조건은 위의 Curl-Div lemma에서 Curl과 Div의 relative compactness와 대응된다. $u_m, v_m$을 $u_m - u, v_m - v$로 바꿔서, $u = 0, v = 0$으로 가정할 수 있다. 그러면 Hodge decomp.에 의해,
$$u_m = da_m + d^* b_m + c_m,$$
$$v_m = df_m + d^* g_m + h_m,$$
where $c_m,h_m$ are harmonic 1-forms and $a_m \rightharpoonup 0, b_m \rightharpoonup 0, f_m \rightharpoonup 0, g_m \rightharpoonup 0$ in $W^{1.2}(M)$, $c_m \rightharpoonup 0, h_m \rightharpoonup 0$ in $L^2(M)$ 이런 것을 얻을 수 있다.
Hodge decomp.의 consequence중 하나가 $M$위에서의 space of harmonic 1-form들의 공간은 locally compact이다. 따라서, smooth하게 $c_m \to 0$, $h_m \to 0$ 된다. 또한 가정에 의해서 $\Delta a_m = d^* u_m, \Delta g_m = dv_m$이 $H^{-1}$에서 relatively compact이기 때문에, $(da_m),(d^* g_m)$은 $L^2$에서 precompact하게 들어가있다. 따라서,
$$u_m = d^* b_m + o(1),\quad v_m = df_m + o(1),$$
in $L^2$가 된다. 또한,
$$\langle u_m,v_m\rangle_g \omega_g = \ast (\langle d^*b_m, df_m\rangle_g) = (d\ast b_m)\wedge df_m = d((\ast b_m)\wedge df_m),$$
임을 알 수 있다. 여기가 그 "미분"의 모습이 드러나는 핵심적인 부분이다.
구체적으로 말하진 않겠지만, Rellich theorem 이라는 것이 있는데, 이것은 $b_m\to 0$ in $L^2$임을 imply한다. 따라서
$$\int_M \langle u_m,v_m\rangle_g\varphi\omega_g = \int_M d((\ast b_m)\wedge df_m)\varphi + o(1) = (-1)^n \int_M (\ast b_m)\wedge df_m\wedge d\varphi + o(1) = o(1).$$
따라서 앞선 Curl-Div lemma와 같은 결론을 낸다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
해석 하면서 푸는거 맞지? 해석 못하면 못 풀게 나오는 선지 있어서..
-
김승모3 화작답 1
김승모3 화작 답 알려주실분ㅜㅜ 답지를 잃어버렷는데 해강들으면서 공통은 채점을...
-
적중예감 12화 15번 왜 노령화지수 전체와의 차이가 유소년 인구수의 차이로 연결되죠?
-
자살하기를 누르는 사람들이 많을까 지금 이 시점에서는 개념 하나, 설명의 뉘앙스...
-
벌써 만드셨나요?
-
국어 0
국어는 평소에도 2~3 떠서 2등급을 맞을거라고 생각했는데 요즘 계속 점수가...
-
아 시발 사러 나가기 존나 귀찮은데 밖에 존나 추워
-
모의고사 풀기전에 해당회차 간쓸개 풀어도 딱히 상관없을까요..?? Ex) 8회차...
-
저는 구경을 하겠습니다
-
많다!
-
노력을 실력으로, 온전히. 1. 책상 올초부터 함께 했는데 어느덧 수능이 일주일...
-
가장 큰 차이점이 멀까요 난이도라고 하기에는 작수도 만만치않게 어려워서…
-
사문 도표 복지제도,저출생고령화,노부유 이렇게 3문제 나오자나용 여기서 난이도 순...
-
맞팔구 틈세에 ㅇㅈ 11
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ미방용ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ...
-
그럼 북적도 해류도 동서방향 성분은 서지만 엄밀히는 북서로 흐르는 건가요??
-
그의 잘못이라곤 그저 한낱 젊은 시절 넘치는 에너지를 발산했을 뿐.. 누구보다...
-
물리 실모 3
시대컨vs현모 남은게 꽤 있어 1일1실모로 한쪽만 풀라하는데 시대컨이 나을까요?
-
나도 이게 컨셉이었으면 좋겠네
-
혐역시절 친구가 찍기로 2과목 3등급 띄움ㅅㅂ..
-
오버슈팅 실검 무엇 18
18수능 현장응시 국어 98점 오버슈팅 딱히 어렵지 않았음
-
언매 1컷 80 0
정도로 어려운 모의고사 있을까요? 요즘 이감이 1컷90대로 순해져서 다른 매운맛을 느끼고 싶네요
-
[Censored] will infiltrate your community....
-
맞팔구 4
문법 질문 있으면 답해 드릴 수 있음 어원 좋아함 잡담 태그 잘 닮
-
공부하러가야지
-
극한 상쇄! 2
존나 열파참 천쇄참월 같은 기술 같아서 존나 멋있음 ㅋㅋㅋㅋ
-
테스트 함 해볼게오
-
그렇게 입으면 추워 뒤집니다
-
바른 개념도 배워서 상쇄하면 그만 아님?
-
둘 다 합격하면 어디 가세요?
-
아직도 6평이었나 9평에 정철나오고 수능에 다시 정철이 나왔을 때의 그 감각을...
-
대신 인생을 배움... 1년 전으로 돌아가도 수국김은 다시 들을듯
-
오개념하면 빠질 수 없는 사건이 생각나네요
-
작년에 윤성훈인가 머시긴가 무슨 팀장이 성적갖고 조롱(?)했다가 유빈이에 박제당하고...
-
56575 2
내 현재실력인듯 분발하자..
-
12회는 뭔가 생윤?스러운데 ㅋㅋㅋ 읽고푸는 문제가 너무 많네요
-
가는 사람 있음?
-
주변에 잇올 중앙lnc 그린램프 있어용 부평점이고 관리형 독서실만 원해서 러셀은...
-
돌총구구국 하악 6
녹읍폐지
-
작년에 수능 잘보라고 선물주거나 편지써줬던 내 후배들 챙겨줘야하는데 진짜 돈이...
-
아니 자고왔는데 1
오르비 불타고 있네 또 나만 못 봤지
-
이감 중요도 0
매년 나오는 거죠? 그간 대체로 잘 맞췄나요?
-
ㅇㅅㅇㅅㅇㅅㅇㅅㅇ
-
수능완성에 나와서 불안한데 안나온지 오래됐죠?
-
수능끝나고 할거 3
1. 포켓몬 카드게임 모바일 어린시절 추억보정 들어간 나를 막을 수는 없음 존나 재밌어 보인다..
-
그냥 연계 다 없애고 정정당당하게 승부보면 안됨? 10
수능까지 벼락치기하고싶지 않아요
-
하 ㅈㄴ맛있다ㄹㅇ
-
그래도 공통점 차이점만 잘 잡으면 지문 예쁘게 읽혔음 그 기출중에 ps전건 이었나...
-
공약 1
이번수능에서 기하가 미적따면 26수능 기하로 응시하겠습니다
-
황금방패와 땅크를 앞세워 여론을 탄압하는 그모습보고 아주깊은 감동을 받았습니다...
-
둘다 합격하면 어디 가세요?
첫번째 댓글의 주인공이 되어보세요.