영어노베 문법질문
I have come here with my cane
have come이 동사고 here은 부사 with my cane은 come을 꾸며주는 부사 맞을까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
탈릅은 면했네요 4
-
“올려”
-
와 진짜 ㅋㅋㅋ 0
파엠도 확정임 100퍼 ㅋㅋㅋ
-
무관은 나가라고 ㅋㅋ
-
GOAT
-
대 상 혁
-
진짜 대상혁 신상혁 짱상혁 알4개 상혁 주인님 진짜 끼잉낑 진짜 주인님 진짜 진짜 진짜 사랑해요
-
역시 대 상 혁 0
젠장 또 대상혁
-
월즈 5회 우승 0
진짜 대상혁 ㅋㅋㅋ 새벽을 투자한 보람이 있었다 ㅇㅇ
-
대 상 혁 1
대 대 대
-
와 우승 0
GG!!!!
-
아니이거진짜미친거아냐
-
이겼다 0
와 대박!!!
-
갈리오를 풀어???
-
대상혁 0
ㅋㅋㅋㅋ
-
불사대마왕 2
진짜 왜안죽음 ㅋㅋㅋ
-
이겨라 넌
-
와진짜 ㅋㅋ 0
노인네 뭐임? 어ㅡ ㅋㅋ하 도파민
-
롤드컵 보면 롤이 너무하고싶어질 것 같아서 안보는 중
-
대상혁뭐노 0
오
-
크아아아아아아악 0
최후의 핑퐁
-
그냥 져도 파엠 확정임
-
대 오 너 0
ㅋㅋㅋㅋㅋㅋㅋ
-
Nnnnnnnnnnnnnnnneeeeeeerrrrrrrrrr
-
패턴도 망했고 3
성적도 망했고, 멘탈도 망했고, 암기력, 사고력, 통찰력, 문해력, 독해력 그냥 다 망했어……ㅠㅠㅠ
-
롤 우승 6
어케해야지 이기는 거임ㅍㅍㅍㅍ??? 룰을 진짜 아예모르는데 계속 보는 중 재밋어서
-
실모 0
수학2 맞는게 목표인데 실모를 꼭 풀어야할까요 제 생각은 그냘 드릴5 4 서킷...
-
자기글러서 0
공부해야할거 같음
-
롤드컵 1
재밌나요? 롤 몰라서
-
안 하는 사람들은 잘 모르겠네요...
-
23.6모 23.수능 24수능 등등 몇 모고에선 2가 뜨고 또 몇몇 수능이나 모고를...
-
롤체하다보니까 챔피언 이름들만 좀 앎..
-
안녕하세요 예비 고3 정시파이터입니다. 이번 9모기준 33411의 성적을 받았습니다...
-
수학 n제 0
제가 지금 서킷을 하루애 하나씩 풀고있어서 12번까지는 커버할수있을거같은데...
-
이거 다보면 잘 수 있을까 잠이 안 옴
-
진짜 무서운점. 2
저 조합 상대로 지면 평생 조리돌림 당함. 제발 티원 가보자
-
5세트는 이게맞아
-
자르반이요????????????
-
페이커 갈리오는 유명한 lpl담당일찐임
-
탈릅할께요 구라임
-
밤하늘의 별~
-
파이팅 0
첨보는데 롤드컵 ㅍㅇㅌㅍㅇㅌㅍㅇㅌ
-
명 상 혁 0
온 우주의 기운을 모으고 있노ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
페이커 파엠 박자 ㅈㅂ 5번째 우승
-
이걸 못봐
-
드릴4or설맞이 1
드릴4를 풀까요 아니면 설맞이를 풀까요
-
그것이 5판 3선승제니까…
-
1컷 내려갈듯
I have come here with my cane
have come이 동사고
→ 맞습니다. 현재완료(have p.p.)가 사용되었습니다. 동사 come은 과거분사의 형태 역시 come이기에 주의가 필요합니다.
here은 부사
→ 맞습니다. 동작이 어디에서 발생했는가, 또는 어디로 발생했는가를 꾸며주는 '장소부사'로써 사용되었습니다.
with my cane은 come을 꾸며주는 부사 맞을까요?
→ 맞습니다. 조금 더 정확히 말하면 come을 꾸며주는 '부사적 용법으로 사용된 전치사구'인데, 이때는 전치사구가 부사구가 되어 동작이 '어떻게' 발생했는가를 꾸며주는 '양태부사'처럼 사용되었습니다.
---
함께 첨언해 드리면 해당 문장에서는 부사 'here'도 동사 come을 꾸며주고 있습니다.
즉, 해당 문장의 구조는 S(I) + V(have come) + A(here) + A(with my cane)'이며
이때 각각의 부사(here, with my cane)가 독립적으로써(=각자 따로따로) 동사(come)를 꾸며주고 있습니다.
판단 근거는 다음과 같습니다.
내가 '어디로' 왔어? → 여기로
내가 '어떻게' 왔어? → 지팡이를 가지고(지팡이를 짚으면서)
이처럼 부사는 그 의미가 꾸며주는 대상으로 연결되듯이 해석된다는 특성이 있기 때문에 부사가 무엇을 꾸며주는지 쉽게 판단이 가능합니다.
(단, 문법적으로 부사가 꾸며주는 것이 가능한 대상이어야 한다는 전제조건 필요)
이상입니다.
답변 너무 감사합니다ㅎㅎ