{1+x^(1/2)}^(1/2)는 부정적분을 구할 방법이 있을까요?
만약 제목에 적힌 식이 나왔다면
어떻게 부정적분을 구할 수 있나요?
아 위의 식이 문제로 존재한다는 건 아닙니다
그냥 9덮보다가 생긴 의문점인데 혼자서는 잘 모르겠어서 질문드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
에잉
-
07모의수능ㅇㅈ 해놓고수능성적표를올려놓는거임...
-
그대여 그대는 찬란한 조기발표를 해다오 Oh어어째서죠? 무엇을 망설이시는 겁니까?...
-
아니 유ㅓㄴ달 개병신새끼들
-
옯끼야아아악 0
-
토익 점수 약간 올리기+jlpt n1취득 25년도는 수학만 파서 고정100...
-
아니 선생님
-
매체 << 수능이 사설보다 더 사설틱하게 나오는 새끼 아 시빨.
-
투투러인데 5
투투러같지 않음 아니 이과생은 맞을까? 싶은 공부비율
-
#~# 4
#~#
-
올해는다풀고일부검토까지했는데 검토하지못한문제들에서틀렸음 한번더하면할수있겠지
-
학교도 못옮기는 불효자인 나는 #~#
-
대학을 갈 수 없는 내 성적은 #~#.
-
내년은 TEAM06의 해입니다
-
과탐 유지할사람들 11
베이스가 얼마나 됨?
-
정시결과 나온담에 하는게 정배일까요 돈이나 벌어야 되나
-
등급컷과 표준점수에는 상관관계가 있나요 컷이 올라가면 표잠은 올라간다든지 아니면 두...
-
흠
-
어과초 재밌음? 11
무슨 장르임?
-
문학 보기 문제에서 선지는 사실과 판단 부분으로 나뉘는데 평가원은 사실 부분을 잘...
-
특히 이감이 그런데 독서 3점중에 ㅈㄴ 복잡한 문제 하나씩 넣어놓잖음 무슨 생명과학...
-
오 2
-
구라인듯 현실직시 더 선명하고 뚜렷해지면서 화남 수능 이 씨발새끼
-
가능할리가있겠읍뇨...
-
27수능 목표로 11
탐구 뭘로 할지 고민하면서 올해 1년 수학만 벅벅 파볼까 6월입대라 공부시간 많이 없을 것 같은데
-
내년에보자
-
언매는 사설 많이 보면 도움됨 뭐? 사소한 글자 하나하나로 변별한다고? 행사'별'...
-
(이륙 부탁드림) 2028 수시부터 기존 졸업자들도 내신 과목 신청 및 수강 가능하도록 국회에다 청원 같이 넣을 분 계심? 1
님들 알다시피 지금.... 2028 입시부터 ㅋㅋㅋㅋ 새 교육과정이 다...
-
현역들에게 폐관수련으로 수학 고정 100을 만들어 N수의 무서움을 보여주겠습니다.
-
1컷 47은 진짜 에바같은데 45진짜로안되나
-
Who's Sally
-
답 뭐해서 틀리심? 전 73했음
-
동시에 건강 걱정 듬
-
어떻게 아는 거냐?
-
어? 그남들은 임신 고통도 모르면서 맨날 애만 낳으래 우리가 애낳는 기계인줄 아나...
-
사설 풀다보면 쓸데없이 사소한 포인트에 집착하게 됨
-
수능 얘기) 수능 준비할땐 금연하는게 좃뇨
-
작수 사문도 풀면서 음 적당하거나 좀 쉽네 했었는데 의문사 왕창하고 39점 3등급...
-
46은 너무 적고 45는 너무 많은 느낌 그래서 45점 백분위 95 아닐까 예상...
-
4수는 선택 18
3수까지 했고 이번에도 개같이 망해서 4수할까 생각중임 현역 때는 공부 안 해서...
-
국어 수학 2~3정도 영어 사문은 1~2정도(거의1) 화학에서 사탐런 하려고 하는데...
-
제일 중요한 건 5
집중력임
-
수능이 끝나고, 각 입시기관별 분석이 쏟아져 나오고 있습니다. 선택과목이 나뉘고,...
-
J는 검사인 Y를 꼬셔서 #~#
-
화1물1=동사세사 12
앞으로 과탐계의 쌍사는 화1물1이다 이상.
-
집밖은 위험하지만 그래도 노력해보기로 했음!
-
건동홍이 가능하구나 과목은 화작확통생윤사문이었음
-
휴 시간 옮겼다 5
점심시간 확보 완 옮겼더니 나타난 십자가??? 오...
라네요
감사합니다 선생님
아싸리 근호 안을 통째로 치환
감사합니다 선생님
혹시 실례가 안된다면 하나만 더 여쭤봐도 될까요...?
말씀해주신 대로 치환을 사용하면 쉽게 해결이 되는 것은 알겠습니다
그러나 저 스스로 치환을 떠올리지 못한 것이 문제의 핵심적인 원인이 아닐까하는 생각도 들었습니다
혹시 선생님께서는 무엇을 보시고 치환을 사용해야겠다+괄호안 전체를 치환해야지! 라는 생각을 하신건지 궁금합니다
이 부분을 제가 확실히 이해해야 부분적분이든 치환적분이든 적재적소에 사용할 수 있을 것 같습니다
알려주신다면 대단히 감사히 받겠습니다
이번 9덮에서도 27번을 틀렸는데 부분적분을 하기 전 치환을 먼저 하면 허무할정도로 쉽게 해결되는 문제였습니다만 저는 부분적분 해야겠다는 생각까지는 했으나 치환까지는 생각이 도달하지 못했기에 이 부분에 대해 꼭 해결을 하고싶어 이렇게 한번더 재질문을 드립니다 부탁드립니다 ㅜㅠ
특이한 형태는 어지간해선 부분 아니면 치환이잖아요. 근데 저건 곱으로 되어 있는 함수가 아니고 lnx 적분처럼 1을 적분한다고 해서 풀리지도 않으니 부분적분은 절대 아니겠구나 생각할 수 있죠. 그럼 이제 판단할 건 dx를 x 없이 dt로 바꿀 수 있는가를 보는 건데 꼭 dt일 필요는 없고 t에 관한 식 * dt 여도 되는 거잖아요? 그 다음에 x^1/2을 치환할 건지 1+x^1/2를 치환할 건지 생각하면 되는 건데 어떻게 치환을 하든 dx를 dt로 바꾸면 되는 거고 루트 x나 e^x 같은 건 미분해도 원래 형태가 남아있으니까(e^x는 그대로, x^1/2는 분모로) 그걸 이용하면 dx를 dt로 바꿀 수 있겠구나 싶은 거죠.
x^1/2=t
1/2(x^1/2) dx = dt
1/(2t) dx = dt
여기서 치환했던 문자가 미분한 식에 어떤 형태로든지 있겠다라는 느낌이 들면 저는 특이한 형태의 경우 치환적분으로 밀고 나갑니다.
저런건 치환적분때리면 풀리긴 하는데
1/(a+x^n)같이 분모에 식있다? 걍 못푼다고 봐야함