2025 9모 수학 손해설 (전과목)
2025 9월 모평 수학 풀이.pdf
[공통]
1~8번 : 그냥저냥 평범한 2, 3점짜리 문제들
9번 : 4점짜리에 단순 계산 문제..?
10번 : 도형 그려놓고 사인법칙 슥삭슥삭 해주면 되는 문제. 그래도 이건 나름 4점짜리다운 문제였다.
11번 : 아무리 그래도 4점짜리인데 너무 기초적인거 물어보는거 아닌가
12번 : 나열할게 많아서 조금 까다로운 문제인 것 같은데 정답률이 꽤 높다. 미적분 선택자 기준으로 정답률 80%나 나올 정도는 아니라고 생각했는데 역시 표본 수준 상승인가
13번 : 13~14번 있는 페이지가 비주얼이 장난 아닌데, 일단 13번은 그래프 그려놓고 보면 y축 대칭이고 적분값 0이어야 되는게 보여서 생긴거에 비해 쉽게 풀 수 있다.
14번 : 본질적으로는 역함수 성질 물어보는 문제였는데, 갑자기 원이 나와서 중상위권 이하의 입장에서는 얼타기 쉬운 문제였을 것 같다.
15번 : 처음 봤을 때 까다로운 적분 퍼즐이라 15번에 있는건가 했는데 풀고 나니까 황당함밖에 안 남았다. 작년 9모 22번과 결이 비슷해보인다.
16~19번 : 3점짜리 문제 모두 평이했다. 19번은 최근에 좀 까다롭게 나오는 경향이 있었지만 이번에는 쉽게 출제되었다.
20번 : 문제 자체는 어렵지 않은데 은근 몇 개 실수로 빼먹기 좋은 문제인 것 같다.
21번 : 문제 풀면서 퀄리티 낮다는 생각은 잘 안 하는 편인데 이 문제는 진짜 별로인 것 같다... 15번은 그래도 수2 개념이라도 많이 쓰였는데 얘는 마지막에 f'(3) 구하는거 빼면 그냥 고1 수학 아닌가. 솔직히 낼 게 없어서 낸 문제인가 하는 생각도 들었음
22번 : a1부터 a5까지만 고려하면 되는데도 순방향이나 역방향 둘 중 하나만 사용해서 풀려고 하면 생각보다 경우의 수가 많이 나와서 복잡하고 실수 가능성도 높다. 순방향이랑 역방향을 절충해서 푸는 것이 최적화된 풀이인듯
[확률과 통계]
23~27번 : 어려운 문제가 없다.
28번 : 확통은 역시 케이스 분류가 생명이다. f(4)의 값으로 케이스 분류 해놓으면 그 안에서 f(1), f(2)도 케이스 분류해야 돼서 까다로운 문제이긴 하다.
29번 : 3점짜리로 출제해도 될 만큼 쉬운 문제. 특이한 점은 정답이 상당히 크다
30번 : A가 받은 공을 기준으로 케이스 분류 했다. A가 공을 2개 이하로만 받을 수 있어서 케이스 분류할게 많지 않아보이지만, A가 하얀 공을 받았는지 검은 공을 받았는지, A가 같은 색깔의 공만 2개 받았는지 서로 다른 색깔의 공을 하나씩 받았는지 등 디테일하게 고려해야 할 부분이 있다.
[미적분]
23~27번 : 어려운 문제가 없다. 27번 너무 순한맛이라 당황
28번 : 생긴거에 비해선 그렇게 어렵지 않은 것 같다. 메인은 그래프를 그려서 역함수를 적분할 수 있는가 물어보는 것 같고, 답을 구하는 과정에서 치환적분과 부분적분 개념도 모두 사용하게 된다. 다양한 적분 개념을 물어본다는 점에서 좋은 문제인듯.
29번 : 부분분수 분해를 할 줄 아는가? a(n) = S(n) - S(n-1)이라는 것을 아는가? 크게는 이 두 가지를 물어보는 문제인 것 같다. 말 그대로 이 두 가지만 알면 쉽게 풀 수 있는 문제
30번 : f(x)를 부정적분해서 F(x)를 구하면 되는데, 이 때 생기는 적분상수를 조정해주는게 키 포인트다. 이 과정에서 케이스 분류할게 은근 있고, 그래프 개형 따져줘야 하는 부분도 있어서 꽤 어려운 문제라고 할 수 있다.
[기하]
23~26번 : 어려운 문제가 없다.
27번 : 얘도 그냥 현장이었으면 슥삭슥삭 풀었을 것 같은데 해설로 쓰려니까 어렵다.. 이건 공간도형 특인듯
28번 : 뭔가 서로 수직인 두 원이 만나는 두 점이 N1, N2여서 cos(N1ON2) = 3/5이라는게 뭔 느낌인지는 알겠는데 막상 그리기 힘들어서 좀 버벅댔다. 그림에 표시한 글씨들도 좀 뭉개진 것 같은데 못 알아보겠으면 물어보세요...
29번 : 음 쉽다 쉬워! 미확기 모두 29번은 쉽게 나온듯
30번 : 벡터 분리로 풀려다가 케이스가 9가지나 나와서 포기하고... PQ의 자취를 그려주는게 키포인트인 문제인 것 같다. OE는 사실상 크기, 방향이 모두 정해져 있는 벡터라서 PQ 자취만 정확히 파악하면 된다. 한 삼각형을 기준으로 잡고 그 삼각형의 변을 따라 다른 삼각형을 움직여주면 자취를 얻을 수 있다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
콜라캔 따서 마시는 중 이게 행복이지
-
1. 모든것⊂(빨갛거나 빨갛지 않은것) 2. (빨갛거나 빨갛지 않은것)⊂모든것 3....
-
오노추 0
누진스 - 노세노세 https://youtu.be/QAeyhDIsXls
-
자다깸뇨 1
다시자러갑니다 일찍 주무세요 다들
-
내년 지구커리 0
그냥 오지 풀커리에 n제 실모 벅벅이 정배겠죠
-
유도과정에서의 발상이 문제풀때 도움되는거 체감하시나요?.?
-
수능 D-40 국어 만점의 생각 마무리-> 피램 옛기출 독서, 문학 -> 실모...
-
뒤늦은 ㅇㅈ 3
함성이 되리
-
씨발 수능을 잘 쳐야 거기에 꺼드럭대기라고 해 보지 하
-
지금 3~4등급인데 실모 안풀때 기출해야함 아니면 그냥 사설 문풀 양 늘려야함...
-
나도 질받해볼랭 14
자기 전에 마지막으롱
-
인스타 비활타고 0
생일날 스토리 올리고 안 올리고 차이가 꽤 크구나 작년에 20~30명 가까이...
-
하.. 찌릿찌릿해서 죽겠는걸 얼마나 방치해둬야 하나
-
문디컬 도전 0
예전 수능때 화작99 미적95 영어2 생명91 지구87 정도 였던 사람입니다....
-
매실문 하는중인데 헷갈리거나 못 푸는 문제만 골라들어도 되나요? 아님 2배속...
-
히마와리 6
아도최애곡이 이거라면믿어주실건가요 너무좋음,,,
-
한지 9덮 0
한지하시는 분들 9덮 보정컷 많이 후한 것 같나요?
-
누구탈릅했나 8
팔로우팔로워둘다빠짐
-
혹시 전남대,제주대 약대 1-2학년 다니시거나 반수하시는분 계실까요? 0
여쭤 보고 싶은게 있습니다! 답변 주시면 정말 감사하겠습니당!
-
무섭다
-
성의수학과외 밑에 “ㅊㅇㅇ”
-
신재호 김종두 0
누가 GOAT?
-
어제 안 자서 6시에 깰 수 있나.. 알람 못 들을 듯여
-
1일차
-
조커 폴리 아 되 아침 9시 대치가는데 볼까말까
-
안녕히 주무세여 1
오늘 아침에 뵈어요
-
가장 안정감 넘치는 형태는 무엇인가요? 아마도 원을 꼽는 사람들도 꽤 있을...
-
공부시간도 빼먹고 물론이거안하면또다른짓거리할듯 비틱하는개씹새끼들보면화나고좆같고...
-
내가 뭘 했는데 갑자기..
-
글리젠용 뻘글 1
글리젠용 뻘글 글리제로따먹고싶다 뻘글
-
씹발 시켜버렸다 6
오늘먹고죽자
-
늦은 현역 인증 5
불금이니깐
-
공부 안하는 부류 근데 9모 이후의 나는…… 내가 제일 싫어하는 부류가 된 것 같다...
-
ㄹㅇ 괜찮을거같은데 무리만 안하면 물론 아칼리나 사일을 나은듯
-
오늘의 라유는 5
0.3 꼬기에요
-
노래 플리 ㅇㅈ 4
네
-
ㅇㅈ 4
교재인증이었구요 저는 한문과 중국어를 좋아했다네요~지금 풀어 보라 하면 다 틀립니다
-
냉면시킬까말까 1
으으으으..
-
피자 잘먹었다 2
근데 이제 냉면이땡김 어캄
-
여러분 메일 넣으면 재르비 풀어준다는 소문이 잇어요 8
사실인지는 모르겠지만 혹시 모르니 눈팅하는 재르비언분들ㄱㄱ
-
제가 좋아했던 주제로
-
재르비 풍년이군 3
-
ㅇㅈ메타에요? 5
ㅇㅈ할게없는데
-
기습ㅇㅈ 11
검정옷 좋아함 펑
-
사탐지원가능 메디컬, 공학계옐 중 올해처럼 과탐 가산점 3%, 4점 이렇게 나온곳이 있나요?
-
25학번 의대생들도 26학년도의대 정원 낮추라고 휴학인가 파업인가 그런거 할까요?
-
누군가가 나를 좋아해줄까..?
예상 등급컷은 언제 올라오나요?..ㅜㅜ
제가 생각했던거랑 거의 문항별로 일치하네요 특히 12번 14번 얘들을 가르쳐보니까 이런생각이 들던데