메인글 문제 해설 완전판
합 S 곱 T
1. B가 “자신있게” <응너모름>을 외치려면, B가 가진 “합”은 두 소수의 합으로 표현되어선 안 된다.
(거의 사실이라고 알려진) 골드바흐 추측(*2보다 큰 모든 짝수는 두 소수의 합으로 표현할 수 있다)
에 의해, S는 홀수이다. 두 수의 합이 홀수라면, 두 수의 곱은 반드시 2를 인수로 가지므로 합인 S는 2x소수 꼴만 아니면 <두 소수의 합으로 표현될 수 없>다. 따라서 가능한 S의 후보군은 <홀수 중 소수+2가 아닌 것들의 집합>이다. 이 집합을 P라고 이름짓자.
좀 디테일하게 가보자면, 가능한 ”합“ S의
집합은 P{11,17, 23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,93,95,97}일 것이다.
2-1. C는 처음에 답을 몰랐으므로 T(곱)의 약수는 6개 이상이다.(...ㄱ)
2-2
C는 B가 외친 “응너모름”을 듣고 답을 알았으므로,
C가 알고 있는 T에 대해서 < T에 대응하는 모든 순서쌍을 관찰했을 때, 순서쌍에 대응하는 S들 중 딱 하나만이 P에 속했을 것>이다.
우선, P에 속하는 S가 존재하려면 T는 홀수여서는 안 된다(...ㄴ, T가 홀수면 쪼개서 더했을 때 짝수-> P에 못 들어감)
따라서 T는 약수 6개 이상인 짝수여야 한다.
또, P는 전부 홀수이므로 T(곱)을 두 수의 순서쌍으로 쪼갤 때 둘의 합(S)이 홀수이려면 T가 가진 모든 2를 한쪽에 몰빵해야 한다.
위와 같은 규칙으로, 가능한 T의 집합인 Q를 구할 수 있다.
3. B는 C가 ”알겠다“는 이야기를 듣고 답을 알았다. 이는 곧 B가 S를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중 Q에 포함되는 것이 단 하나 여야 한다는 얘기다.(Q의 정의는 윗 댓글 참고)
이때 핵심 아이디어가 등장한다. <2를 몰빵해야 함>에서 아이디어를 얻어 보자
만약 S가 4+p1으로 표현되면서 동시에 8+p2로 표현된다고 하자. (단 p1,p2는 소수)
그렇다면, 위 문단을 참조하면
<모든 순서쌍에 대응하는 T들> 중 Q에 속하는 T가 적어도 4p1, 8p2로 벌써 두 개가 되어 버린다. 따라서 P의 원소들 중 저렇게 표현되는 S들은 답이 될 수 없는 것이다.
이는 16,32,64에도 마찬가지로 적용된다.(*S는 2+p로 표현되지 않음을 처음에 얘기했으므로 이 경우는 제외 가능)
따라서, P{11,17,23,27,29,...95,97}에서, 2^@ + p 꼴(2<=@<=6)로 표현되는 경우의 수가 두 가지 이상인 P들을 모조리 제거할 수 있다!
이를 모두 제거하고 남은 집합을 P'이라고 하자. 그렇다면 P'는 {17,29,41,53,59,89,97} 이다.
(제가 노가다했습니다 믿어주세요ㅠㅠ)
이제< P'의 원소에 해당하는 S>를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중, Q에 속하는 것이 1개가 아닌 경우만을 제거하면 된다.
Q에 속하는 T를 나열하는 것은 비직관적이니, “곱이 Q에 포함되도록 하는 순서쌍“을 S를 기준으로 하여 나열하자.
(두 개가 되는 순간 더 세지는 않았습니다.)
S=29: (2,27) (4,25)
S=41: (4,37) (16,25)
S=53: (16,37) (40,13)
S=59: (16,43) (4,55)
S=89: (16,73) (64,25)
S=97: (8,89) (16,81)
S=17: T가 Q에 속하는 순서쌍이 (4,13) 하나로 유일함.
따라서, “두 수의 합”이 100 이하라는 전제 하에서는 (4,13)만이 유일하게 가능한 순서쌍임이 증명되었다.(범위고려안해도 유일한 해인지는 모르겠네요)
0 XDK (+3,000)
-
3,000
-
새삼 질 것 같던 선거를 뒤집은 대석열이 대단해보이네… 대 석 열 ;
-
누가 더 어려움? 영어 올해 내내 유기했다가 조정식 더데유데2.0 사서 풀었는데...
-
요러케됨 ㅆㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
그냥 대류핵이 0.975 면 에바아닝가? 하고 풀었는데 판단 근거가뭐죠..
-
[속보]'사상 최고가' 비트코인, 7만5000달러 돌파 4
6일 코인마켓캡 기준 최고가 7만5011달러.
-
외접원의 반지름 주어질 때 말고 또 언제 활용했었죠?
-
좀 찍어서 보내줄 사람 제발 Cu 깊콘 드림 줄임말 모음집이 교재에 수록돼있는지...
-
준킬러 11-15가 가장 어려웠던 평가원이 뭔가요? 4
킬러는 욕심 버렸고 준킬러라도 잘해보고 싶은데 궁금합니다
-
바이든이 정신줄 잡기를 기도했어야지 뭔 낙태무새 인도녀를 대통령 후보로 올리니까 이...
-
다른 과목은 몰라도 지리에선 올해 3모부터 10모까지 난도 생각해보면 원래 쌍지러...
-
영어 2~3 진동인데 빈순삽 한번호로 다 찍는 거 괜찮을까요 1
6모 78 9모 85 였습니다 진짜 수능날 꼭 2받아야해요.... 31,32번...
-
이거 제 근처 sky 나오신분들이 추천하셔서 하고 있거든요? 그냥 매일매일...
-
[속보] 대통령실 "워싱턴 새 행정부와 완벽한 한미안보 구축할 것" 2
대통령실 "워싱턴 새 행정부와 완벽한 한미안보 구축할 것" (SBS 디지털뉴스편집부)
-
곱창먹을까 5
먼가 기분이 곱창내고싶음
-
국어푸는데 머릿속애서 노래가 재생되네 ㅋㅋㅋㅋ
-
아 ㅋㅋ
-
지능차이인가
-
대전협이 지난 2월 20일 성명서를 통해 발표한 '7대 요구안'은 △필수의료 정책...
-
노래가 의지를 담았ㄴ느지 안담았는지 해설해준 영상어디서 봄?
-
ㅋㅋ
검산한번더했다...
맞는거같나용
가독성은 별로인듯...
잠을 못 자서 신뢰하실 만한 컨디션은 아닙니다마는
완전히 이해했고 계산실수만 안 하셨으면 옳은 것 같습니다
다만 댓글에 관한 내용은 메인글에 쓰신 내용을 말씀하신 건지
복붙이슈네요 ㅎㅎ 확인했슴당
혹시 예전 닉네임이 대학어디가지 셨나요?
수학 잘 설명하셨던 기억이 있어요
어 네 맞아요! 되게 예전 이름인데 기억해 주시네요 감동입니다 ㅎㅎ
항상 글 잘 보고 있습니다!