171130 풀이?해설?
솔직히 이거보단 230622같은 게 훨씬 어렵다고 생각해요 그래서 글은 다소 긴데 실질적 풀이는 엄청 짧으니까 171130 거르신 분들은 한 번 읽어보시면 좋을 것 같아요 살짝 찾아봤는데 이런 거 안 나온다고 거르신 분들이 몇 분 보여서...
(맨밑에 요약있음)
지금 암산 폼이 너무 좋아서 뭘로 해볼까 찾아보다가
이게 역대 가장 어려웠다고 해서 이걸로 해봤는데, 누구나 풀 수 있는 것 같아서 써보게 됐어요
우선 풀이를 적어보면,
(가)조건은 x=/=a니까 f=~~ 꼴로 정리가 가능해요
(풀이를 바로 떠올리고 한 게 아니라 정보가 없는 f에 대해 정리를 하는 거에요 기본적이고도 중요한 사고라고 생각함)
f는 "(a, 0)부터 g위의 한 점 (x, g(x))까지의 기울기"에 대한 함수임을 알 수 있어요(단, x>a)
이때 조심해야 되는 게 익숙한 대로 g(a)=0으로 처리하면 안 돼요.(f가 x=a+에서 무한대 발산하면 아닐 수 있음) 저도 순간 헷갈려서 (다)조건 보고 뇌정지 왔었는데,,
아무튼 이제 최고차항 계수 -1조건과 (나)조건을 함께 보면,
g가 x=alpha, x=beta에서 같은 접선을 가진다는 걸 알 수 있어요
<-
1. f를 기울기로 가지고 (a, 0)을 지나는 직선은 (a, 0) 오른쪽에서만 그려져요. 헷갈리시면 안 되는 게, f는 '기울기'에요
2. f가 두 지점에서 같은 양의 극댓값을 가진다는 건, 그 직선이 '올라갔다내려갔다'를 2번 한다는 거에요 그것도 우상향으로 가장 가파를 땐 같은 +기울기로!
그럼 g의 두 극대점보다는 왼쪽에 (a, 0)이 있겠져
그럼 M>0니까 g의 계형을 몰라도, 이정도로 그려질 수 있을 거에요
그리고 이런 상황에선, (?)친 g의 일부가 어떻게 생겼든, f가 극대 또는 극소가 되는 x값이 무조건 3개임을 알 수 있어요(alpha, beta, 그리고 대충 (?) 근처에 하나 더)
적어도 (나)조건이 성립하는 한, 3개가 아닌 예시는 잡히지 않아요
근데 (다)조건을 보면, g의 극점은 2개 이하여야 하니, 당연히 3개는 안 되겠죠? 그럼 g와 (?)가 어떻게 생겼는지 대충 보이네요
(직감적으로 위의 경우가 답일 것 같긴 하군요)
이제 사실상 마지막인 게, g의 극점이 3개가 뜨지 않도록만 M값(또는 범위)을 잡아주면 문제가 끝나요.
M에 대한 정보를 어떻게 찾을 수 있을까요?
g에서 f=M일 때의 접선을 뺀 함수를 그려 볼게요 (h)
(alpha, beta는 g와 직선의 접점의 x좌표, 6sqrt(3)은 주어진 조건)
이 함수에 좀 전에 뺐던 직선을 다시 더했을 때, 파란색으로 칠한 변곡점에서의 기울기가 0이상이 되도록하는 게 목표에요
즉, 저 기울기를 m이라고 하면, M+m>=0, 곧 M>=-m입니다. m값만 찾으면 되겠네요!
m값은, 변곡점의 접선의 기울기였어요. 다항함수의 변곡점은, 도함수의 극점에 대응되죠? (원래 변곡점은 이계도함수의 부호변화가 있는 지점이라는 거 참고하셔요)
(삼차함수 비율관계 1:sqrt(3))
그리고 변곡점의 '기울기'는,
그에 대응하는 도함수의 극점의 '함숫값'이에요.
그 말은, m의 값이 h'의 극솟값과 같다는 거에요
이건 이차함수 넓이 공식으로 바로 구할 수 있습니다
미적분의 기본정리에 따라, 정적분은 역도함수의 차로 표현되기 때문이죠
이때 h'이 x축 위의 점을 기준으로 점대칭이므로, 밑넓이 S의 절반이 극솟값이에요. 즉 m=-216이고, 저어어 위에서 언급했듯 M>=-m이므로
M>=216, 답이 216입니다
다 적고 보니까 수2문제네용
엄밀하게 적느라 글이 긴 거지, 실질적으론 푸는 시간 엄청 짧아요 풀이에 식 사실상 하나도 안 나옴
-요약
1. (가)조건에 의해 f는 기울기 함수
2. (나)조건에 의해 f=M일 때 g에서 이중접선임
3. -(h의 왼쪽 변곡점에서의 기울기)보다 M이 크거나 같음
(h는 g-(이중접선))
4. -(h의 왼쪽 변곡점에서의 기울기)는 이차함수(h'') 밑넓이의 절반임
5. M의 최솟값=216
+예전부터 느낀 건데 오르비는 왜 뭐 지울 때마다 화면이 요동을 치나요?ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
회원에 의해 삭제된 댓글입니다.좋아요 0
-
153일차
-
막판에 실모를 5번씩 치네;
-
유불도의 죽음관 비교하는 문제라던가 1단원 윤리 접근 이런 문제라던가 그런데서…
-
1회는 42인데 2회는 39뜸 ㅜㅜㅜ 3목표인데 ㅈㄴ 걱정됌...
-
파이널 시즌 전부터 1일 1실모 하셨던분들 리스펙... 4
이거 전과목 1일 1실모, 탐구는 1일 1실모 추가로 더하니까 7시간 이상자도...
-
물속에서 타보고싶음
-
싸코 0
10번에 나오려나 13번에 내주면 안되나
-
조선 중기 사람들은 '안녕'이란 인사말을 쓰지 않았다 7
'안녕'이란 인사말은 조선 말 언간에 쓰이던 상투적인 표현에서 유래한 것이다
-
오늘 스탠파 2권 질문받아주다가 켤레복소수 급수에 엮은거보고 동공지진함
-
드디어 90 1컷 거침!! 제발 이 감각으로 수능까지 제발
-
에이어에서 방심했다가 샹크스한테 탈탈 털려버렸다... 2번째 푸는데도 너무...
-
티비로 태블릿 연결해서 진격거 보다가 갤러리를 동기가 봐버렸음.. 호시노 짤 잔뜩 있었는데
-
사만다 적중예감 2
사만다가 계속 적중예감 보다 등급 잘 나오는데 왜이런거임? 적중예감은 2~3(거의...
-
조선사 재밌는데 0
한국사에서 비중이 넘 적어서 슬픔
-
이제 찍특 안먹히는거 다 알지 않나? 작수 수학 공통 5번 답1개 작년 9평 미적...
-
국어 인강 2
고2고 강기분 듣고 있는데 볼륨도 너무 크고 안 맞는 거 같아서 김동욱 들어보려...
-
11투스 3
화작 81 미적 85 영어 3 사문 47 생명 44 ㅅㅂ 이러면 대학 어디나옴?
-
미국 대선 누가 되려나 26
누가 되든지 상관없으니 내 주식 좀 살려줘
-
11번 ㄷ보기만 보면 되는데 P가 처음x의 1/3이라는거 찾았고 1/3이 3/8보다...
-
돈까스 인증 22
-
제발
-
그나마 쉬운 회차 3개정도 알려주세요 ㅠ 너무 어려워서 몇개만 풀려고여..
-
우우 옵붕이 공부완료 11
요즘 국어 성적이 안나와서 걱정이긴한데 뭐 어떻게든 되겠죠
-
귀여워
-
ㄹㅇ 궁금
-
메이저 모의고사 퀄리티는 이게 맞음 ㅇㅇ 참고로 본인은 이투스 종로 이퀄 더프...
-
국어만하면 뇌가안깨요..........첨엔 정신차려져있는데 2시간지나면 점점 뇌가...
-
어떤실모는 아무리 풀이과정이 그지같아도 계산실수 없어서 점수가 잘 나오는지...
-
이투스 모의고사는 투자한 돈이 아까운 스레기이다 뭔 수능직전 모의고사를 자기네들...
-
형질 세포, B,T림프구는 비특이적 면역 작용에 관여하나요? 0
궁금해요.....
-
서바 전국 15회 답지 좀..ㅠㅠㅜㅜ 제발요..ㅠ
-
추울땐 국밥이지 2
-
제 아이디 입력해주시면 추천해주신 분과 제게 모두 만원권이 증정된다고 합니당 아이디...
-
단 하루만 잘하고싶다 10
11/14에만.
-
상상 제외하고 추천부탁드려요! 아주많이 어렵지는 않은걸로…
-
화작 질문 1
39번 답이 5번인데 [A]에서 가대를 강화하는 잠수 굿 , 게석풍습 이게...
-
대학 못옮길듯 ㅇㅇㅇ ㅅㅂ
-
정병임???
-
매일 실모 풀고 있어서 그냥 관성으로 푸는 느낌인데... 이렇게 하다 뭔일 생기는건 아니겠지
-
근데 진짜 이기세면 10
9망수잘 수기 쓰는거 ㅆㄱㄴ일거같은데
-
내년 고3 3월달에 자퇴하려는데 2026학년도 수능보는 입장에서 대학 입시도 바뀌고...
-
뭐 먹을까 6
주변에 타코야끼집이 없어.........
-
1컷얼마나될까요 미적분도 빡세고 공통도 힘드네요..
-
밥 머먹지 2
-
없던 학창시절 첫사랑이 생각남.. 먼가 아련하면서도 좋음..
-
ㅋㅋ
-
오르비 계정 네이버 연동인데 아...
-
난이유형이 젤모르겟음 ㄹㅇ