171130 풀이?해설?
솔직히 이거보단 230622같은 게 훨씬 어렵다고 생각해요 그래서 글은 다소 긴데 실질적 풀이는 엄청 짧으니까 171130 거르신 분들은 한 번 읽어보시면 좋을 것 같아요 살짝 찾아봤는데 이런 거 안 나온다고 거르신 분들이 몇 분 보여서...
(맨밑에 요약있음)
지금 암산 폼이 너무 좋아서 뭘로 해볼까 찾아보다가
이게 역대 가장 어려웠다고 해서 이걸로 해봤는데, 누구나 풀 수 있는 것 같아서 써보게 됐어요
우선 풀이를 적어보면,
(가)조건은 x=/=a니까 f=~~ 꼴로 정리가 가능해요
(풀이를 바로 떠올리고 한 게 아니라 정보가 없는 f에 대해 정리를 하는 거에요 기본적이고도 중요한 사고라고 생각함)
f는 "(a, 0)부터 g위의 한 점 (x, g(x))까지의 기울기"에 대한 함수임을 알 수 있어요(단, x>a)
이때 조심해야 되는 게 익숙한 대로 g(a)=0으로 처리하면 안 돼요.(f가 x=a+에서 무한대 발산하면 아닐 수 있음) 저도 순간 헷갈려서 (다)조건 보고 뇌정지 왔었는데,,
아무튼 이제 최고차항 계수 -1조건과 (나)조건을 함께 보면,
g가 x=alpha, x=beta에서 같은 접선을 가진다는 걸 알 수 있어요
<-
1. f를 기울기로 가지고 (a, 0)을 지나는 직선은 (a, 0) 오른쪽에서만 그려져요. 헷갈리시면 안 되는 게, f는 '기울기'에요
2. f가 두 지점에서 같은 양의 극댓값을 가진다는 건, 그 직선이 '올라갔다내려갔다'를 2번 한다는 거에요 그것도 우상향으로 가장 가파를 땐 같은 +기울기로!
그럼 g의 두 극대점보다는 왼쪽에 (a, 0)이 있겠져
그럼 M>0니까 g의 계형을 몰라도, 이정도로 그려질 수 있을 거에요
그리고 이런 상황에선, (?)친 g의 일부가 어떻게 생겼든, f가 극대 또는 극소가 되는 x값이 무조건 3개임을 알 수 있어요(alpha, beta, 그리고 대충 (?) 근처에 하나 더)
적어도 (나)조건이 성립하는 한, 3개가 아닌 예시는 잡히지 않아요
근데 (다)조건을 보면, g의 극점은 2개 이하여야 하니, 당연히 3개는 안 되겠죠? 그럼 g와 (?)가 어떻게 생겼는지 대충 보이네요
(직감적으로 위의 경우가 답일 것 같긴 하군요)
이제 사실상 마지막인 게, g의 극점이 3개가 뜨지 않도록만 M값(또는 범위)을 잡아주면 문제가 끝나요.
M에 대한 정보를 어떻게 찾을 수 있을까요?
g에서 f=M일 때의 접선을 뺀 함수를 그려 볼게요 (h)
(alpha, beta는 g와 직선의 접점의 x좌표, 6sqrt(3)은 주어진 조건)
이 함수에 좀 전에 뺐던 직선을 다시 더했을 때, 파란색으로 칠한 변곡점에서의 기울기가 0이상이 되도록하는 게 목표에요
즉, 저 기울기를 m이라고 하면, M+m>=0, 곧 M>=-m입니다. m값만 찾으면 되겠네요!
m값은, 변곡점의 접선의 기울기였어요. 다항함수의 변곡점은, 도함수의 극점에 대응되죠? (원래 변곡점은 이계도함수의 부호변화가 있는 지점이라는 거 참고하셔요)
(삼차함수 비율관계 1:sqrt(3))
그리고 변곡점의 '기울기'는,
그에 대응하는 도함수의 극점의 '함숫값'이에요.
그 말은, m의 값이 h'의 극솟값과 같다는 거에요
이건 이차함수 넓이 공식으로 바로 구할 수 있습니다
미적분의 기본정리에 따라, 정적분은 역도함수의 차로 표현되기 때문이죠
이때 h'이 x축 위의 점을 기준으로 점대칭이므로, 밑넓이 S의 절반이 극솟값이에요. 즉 m=-216이고, 저어어 위에서 언급했듯 M>=-m이므로
M>=216, 답이 216입니다
다 적고 보니까 수2문제네용
엄밀하게 적느라 글이 긴 거지, 실질적으론 푸는 시간 엄청 짧아요 풀이에 식 사실상 하나도 안 나옴
-요약
1. (가)조건에 의해 f는 기울기 함수
2. (나)조건에 의해 f=M일 때 g에서 이중접선임
3. -(h의 왼쪽 변곡점에서의 기울기)보다 M이 크거나 같음
(h는 g-(이중접선))
4. -(h의 왼쪽 변곡점에서의 기울기)는 이차함수(h'') 밑넓이의 절반임
5. M의 최솟값=216
+예전부터 느낀 건데 오르비는 왜 뭐 지울 때마다 화면이 요동을 치나요?ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
회원에 의해 삭제된 댓글입니다.좋아요 0
-
ㄴ선지 이건 진짜 처음 보는데 뭐 어떻게 해야 하는 거예요? 모르는 거라 공부하려고...
-
기습 우정쌤 찬양 17
우정쌤이 나 공부 되게 잘하는줄 아시는데... 더 열심히 살게요 선생님
-
국어 과학지문을 물리 화학 지문으로 내버려서 국어에서 이득보라는 평가원의 큰계획이시다(제발)
-
밑으로 흐르니까 눈물이 흐르는거 같아요.
-
어그로 ㅈㅅ.. 테일러가 생명공동체랑 생명 공동체 그자체를 구분한거 맞나요? 사설...
-
A하며 B하는것은, C를 보여주는 것이겠군. 이런 선지 구조는 보통 A하며 B하는게...
-
목표 높게잡고 열심히하고 다 좋은데 나를 알고 현실적으로 실행해야됨을 지난 5년간을 통해 깨달음..
-
뭐가 더 쉽냐의 경중을 가릴 수는 없음 다만 예체능 입시할 때의 정신적 스트레스가...
-
공부 관련 상담 받고 싶은데 누구한테 물어봐야하는지 모르겠어요 오르비에 계신...
-
수능 끝나고 다음날부터 서강훌 모드로 진입한다
-
국어의 모음조화는 기원적인 것인가? 혹은 몽골어족의 TR 조화 등의 주변 언어의...
-
예체능 소신발언 6
음미체 무시하는 거 걍 생각짧은 놈임 입시 준비해보면 이거 줫나게 어려움 근데 수학...
-
말이 되냐고 어떻게 한자릿수냐고 나 연경제 가고싶다고...
-
걍 시대인재는 국어를 내지 마라 ( = 한수가 한수했다) 57min 독서론 + 화작...
-
반수망하면 그렇게 정신승리 해도 될까요?
-
-중고나라, 벼룩시장, 고물 가게 등 오프, 온라인 경매장 판매 카드: 폐기...
-
더프 수학 3
10덮 찍맞없이 확통 92였는데 11덮 68뜰수가 있나요 풀다가 컨디션이 너무...
-
도서관 문 닫을때까지.
-
국제캠퍼스 뭔가 이상해보임 제국캠퍼스 ㅈㄴ 세보이는데
-
비상사태………
-
그래서 오늘 안할거임
-
숭실숭실~ 이름보면 귀여워보이는데 숭카이를 접하면 가슴이 뜨거워짐
-
Seoul national education 어쩌구 박힌 과잠 입었을때...
-
이거 언제 다풀어 국어- 상상 절반, 문실정 5개, E뮨 시즌 3,4 수학-...
-
예상 난도 13번이라는데 미분가능하도록 하려면 함수가 연속이어야 하니까 연속성으로...
-
ㅅㅂ 오렌지 다맞고 고전소설에서 하나 나갔네 뭔......
-
건동홍 버리고 왔는데 돈없어도 상경했어야했나
-
머리아프다오 0
오늘은 실모를 풀지 않겠디지니
-
나 작년에 국민대랑 과기대 낮공 붙었는데 (재수는 확정이였지만 부모님이 그냥 함...
-
인간의 범주서 탈락해버린 짐승
-
예비 고2 이고 선택과목 2학년때 물화지 기하 생윤 3학년때 미적 언매 이고요...
-
탕 탕 후루후루~ 탕탕 후루루루루~
-
‘연세대 문제유출’ 논란 일파만파…소송·수사 이어 1인 시위 2
‘관리 부실의 책임을 학생에게 전가하지 말라.’ 4일 오전 서울 서대문구 연세대학교...
-
에서 "교" 자만 더한 학교가 맞음 전적대라서 어그로좀 끌어봄
-
박혀있던거 꺼내서 풀었는데 와 계산 ㅈ되던데 ㅋㅋㅋ 15 22 28 30 남기고...
-
강민철쌤 커리큘럼 탈 예정인데 독서는 마닳로 그냥 혼자서 독학하고 싶고 문학은...
-
탈급간 아님? 취업률도 그렇고 ㅇㅇ
-
오늘의 모닝 실모 결과 11
한수 파이널 7차: 87 이해원 파이널 1회:96 국어... 90점대가 실종됐다
-
오늘 밤샐거임 8
ㄹㅇ임
-
40분안에 풀기 가능인가요???
-
그뒤로 나락갔는데 수능때 커하 ㄱㄴ?
-
그냥 여친분 부러워ㅓㅓㅓㅓㅓㅓㅓㅓㅓㅓ
-
겨울 때 못들은 단과영상, 파이널단과 영상 찍어둔거 안들었는데 이거 아깝다고 들을...
-
22 30맞 20 9 틀....
-
ㄴ선지 ㄷ선지가 궁금한데요 ㄴ선지는 그림 A-B가 용융점(?)을 넘기기 못해서...
-
근데 서/연고도 4
연대 경영 성적으로 서울대 협문 못들어가지 않음? 고경은 몰루