8덮 수학 22번 현장에서 맞은분 계심?
눈대중으로 판단하다가 끄적끄적 11로쓰고 넘겼었는데 다시푸니까 겁나 골 때리는 문제네 이거
현장에서 풀고 맞으신분 22번 풀 때 생각의 흐름좀 알려주세요..,,
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
자야지..
-
진짜 불멸의기록이다
-
상대 오로라 뽑으면 어떡하냐고? 상대 요네 나오면 어떡하냐고? 상대 세주 나오면...
-
전 지금까지 제 태블릿이 은색(그냥 메탈)인 줄 알았는데 엄마가 오늘 분홍색이라고...
-
미드원딜 너무 차이나는데
-
친해지고 싶은 여자임.
-
확실히 수능이 가까워지긴 하는듯..
-
안녕하세요? 수능 준비할때 힘들때마다 저를 투영한 소설을 짧게 써봤어요. 한...
-
영혼까지 갈렸네 2
Zzzz
-
기습 ㅇㅈ 11
프본이에요~
-
이미지 적어드림. 35
정성은 없음.
-
방어사줄사람댓글 20
같이먹어줌
-
제 이미지 9
적어주세요
-
ㅇㅈ 12
부엉이
-
ㅇㅈ글마다 다 놓치네 분명 이 글 쓰면서 또 놓치겠지??
-
오늘도 파이팅입니다!
-
첫인상 적어드려요 ;) 106
적어드립니다
-
크라운 씌운 어금니가 가끔 양치할 때마다 시림... 안에 썩고 있는 거 같은데 이거...
-
ㅇㅈ 16
잉...직..
-
똥테 다는 거 뿌듯함
-
ㅇㅈ 12
팡
-
있으신가요
-
12시구나 시간순삭 에반데
-
이원준 쌤만큼 헤어스타일 특이하신 강사분이 또 있네 4
그냥 유튜브에 떴는데 헤어스타일 때문에 보게 됨 정종영 쌤이시래요
-
오르비 슬슬 적응하는중 19
몸이풀리네
-
씁
-
질문해봐 ㅋ 2
ㅇㅇ
-
ㄱㄴㄷ 다시 나올 것 같음 평균값 정리 내용 베이스로.. 22수능때 6 9 예고도...
-
30틀 13 14 15 너무 더프틱한 문제들 20 21 22 29 너무 쉬움 28 멈칫했지만 풀만함
-
눈호강 드가자잇
-
수학도 국어도 노력도
-
미적 푸는데 뭐임 진심.. 복잡한것도 복잡한건데 계산에 쓸데없이 머리 풀로 돌리는 중인데..
-
작수 수학 5번으로 밀었다가 대참사 당했는데 올해는..
-
ㅇㅈ해보고싶른데 0
네이바에 오르비치면 얼굴사진 쭈르륵나와서 못하겟밍 ㅠㅠ
-
이런 것도 절반 인증에 넣어주나요?
-
이거 1급 따려면 지구과학보다 암기 많이 해야하겠죠...
-
6개월동안 나 뭐한거냐진짜 와...
-
내 셀카는 친구들 고통스럽게 할 오글거리는 포즈(하트나 입술 내미는) 거 밖에 없다는 거
-
눈이 나쁘다는건 5
보이지 않는다 x 화질이 존나 구려진다 o
-
주식 계좌 ㅇㅈ 2
내 60만원 돌려줘요
-
헬프 미 ㅠㅠ 0
뉴런 수2 다 못들을거같은데 후반부(띰10부터)는 문제만 풀고 해설 듣는 식으로...
-
이러면 사람들이 몰려올까?
-
동역학 큰일났다 2
솔루션을 봐도 뭔 말인지 모르겠음.. 이건 이해 안 되게 쓴 솔루션 저자 잘못 아닌가
-
분명 유빈이는 교재 미리보기나 n회독용으로 쓰려했는데.. 5
제본하면 어느정도지? 해서 찾아보니 쓰읍…………… 갈등중…………… 한마디부탁드립니다.
-
안녕하세요 도희T 입니다. 올해도 어김없이 이 글을 올리게 되었습니다. 항상...
-
뭔가 붕뜬거같은 느낌
-
정답은 6
그냥 잘못된선택의대가임
"임의의 실수" 이거부터 어지럽던데
집모긴 하지만 적어볼게요
x1x2에 뭘 넣어도 저게 성립한다--> 아하! {f(x)의 모든 치역} >= {f(x)-g(x)의 모든 치역}이네... 즉, min f(x) >= max f(x)-g(x)구나!
f-g의 차수를 일단 알아야 하는데... f-g가 3차거나 1차라면 치역이 -inf~inf잖아? 그럼 f-g가 이차함수 혹은 상수겠구만~
그럼 당장 확실히 알 수 있는 건, f랑 g의 심차항 계수가 둘다 0이라는 거 정도...
근데 이제 할 수 있는 게 별로 없어 보이는데...지금 바로 미정계수를 박는 건 출제 의도가 아닌 것 같아. 아직 안쓴 게 하나 있네. g(1)을 띡 줬다는 건 이게 좀 특수한 경우라는 거겠지? 저게 ”부등식의 등호성립조건“일 확률이 높겠구만... 왤까!
일단... 당장 두 함수의 극대소를 구하는 건 힘들어 보이네. 좀 덜 엄밀하더라도 보편적인 얘기부터 시작해야겠다
->일단 적어도 f(x)>=f(x)-g(x)이긴 해야 하는 거니까, g(x)>=0이네! 이거였군. 따라서 g는 (x-1)^2를 인수로 가지는 게 확실하고.
되게 특이한 게, 아까 ”f(x)와 (f(x)-g(x)) 두 함수의 치역의 대소관계가 깔끔하다“(즉 서로 겹치는부분 x)는 걸 알았는데, x=1일 때는 딱 겹치네?
아!!! 그럼 x=1에서 f(x)가 최소이면서 동시에 g(x)가 최대이구나!
그럼 대충 f랑 g 생김새가 구해지고, g의 극대는 -6임이 확정되네~ f가 “최솟값”만 1에서 가져주면 되겠다! f가 “극솟값”을 1에서 가지는 건 확정이니까... 다른 극소보다 1에서의 극소가 더 작으려면...!
이이후로 미지수도입후 계산쭉쭉~했습니다
뭔가 상당히 부드러워보이는데 24분동안 고민하면서 대충 이런 흐름대로 나온 사고를 정리한 거에용 실제로는 중간에 엄청 턱턱 막히고 무지성 미지수 도입했다가 계산지옥열렸었음
세상에 마상에 감사합니다.. 정말 대단쓰..................
두번째 댓글 마지막 줄에서 g(x)가 최대가 아니라 f(x)-g(x)가 최대 맞지여??
네넹