수학 급합니다!!! 다항식에서 미지수의 차수는 무조건 자연수인가요??
게시글 주소: https://image.orbi.kr/0006895897
제목이 곧 내용입니다~~ 카이스트 면접 대비하는데 헷갈리네요,,ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
빡통처럼 학교 수행이나 꾸역꾸역 하기 바빴던 저능능아였는데 중딩이후론 내신 8x점이 일상 아
-
생기부가 물리라 아쉽구만… 인설의는 다음생에
-
그런걸 떠나서 나는 지금 글레이즈도넛을 먹는중임 ㄹㅇ 개맛도리라 눈뒤집고 쳐묵하는중 캬이맛이지
-
물리학2에서 나오는 스킬들(ex 축돌리기, 중력제거 등)은 일반물리학에서도 쓰나요?
-
이러고 있으니 더 우울함
-
미2틀 공3틀 80점 3등급이 될 가능성이 있는건가요?ㅠ 1
하 쒸.. 그럼 표점 1 깎이는건가..?
-
난 초딩땐 받아쓰기 40점 중간고사 30점 처맞던 폐급이었고 중딩때도 내신으로...
-
이게 무슨 청천벽력같은 메인글임뇨..
-
역시 정법을 선택하기로 결심한건 옳은 선택이었어 사문정법 Team 최적 Let's go
-
안녕하세요 크럭스컨설팅입니다. 크럭스 정시상담이 예약이 오픈과 동시에 폭주하여 여러...
-
길가다 발견함 3
-
초콜릿먹으니기분이괜찮아짐 초콜릿하나에휘둘릴정도기분이라니...
-
나랑10살차이나는거임..?
-
면접까지 끝나니까 정말 뭘해야 할지 모르겠네요..추천해주실수 있나요
-
동생 새끼랑 전쟁 뜨러 간다
-
수정테이프,연필,지우개도 못쓰게하는 그 학교
-
뀨뀨 15
뀨우
-
좀 불쌍한데 축구나해라 자식아
-
언 89 미 82 영 2 생윤 94 사문 94
-
대성캐쉬 남아서 대리구매 해드립니다 인증 가능 진짜임.. 10프로 할인해드릴게요...
-
초딩때 똑똑했던 친구들은 중학교 때도 공부 잘하더라 7
근데 고등학교 올라오고 나서부터는 나락간 애들 많음 역시 고등학교 공부가 빅게임이야
-
공모 떨어졌나 0
1주일 전에 보냈는데 아직까지 답장 없는거 보면ㅇㅇ..
-
화들짝!
-
저녁ㅇㅈ 3
배달비 ,매운탕까지 3.8ㄱㅊ한데
-
나 그때 뭐 했지
-
임신함
-
현우진 4
예비 고3인데 수학 상 하 원 투 미적분 확통 전부 시발점 들었습니다. 이번...
-
사문 똑같이 45점 하 ㅅㅂ....
-
5군데정도 지원했는데 한군데서 면접 연락오고 나머지는 지원서를 읽지도 않네 원래...
-
남은 6년동안 뭐해야함?
-
이제 좀 의대 붙여주면 안 되냐
-
기절한 다음에 금요일에 일어나고 싶다ㅠ
-
졸업합니다 드디어 아 이번에 대학 못 붙으면 재수하려고요
-
오늘의 명언 바람과 파도는 항상 가장 유능한 편에 선다. 0
the winds and waves are always on the side of...
-
인증해✊✊
-
나 초6땐 1
단원평가 80점받고 학교끝나면 우르르 놀이터가서 지탈하고 컵떡볶이랑 슬러쉬먹고...
-
좋아하는 유튜버입니다. 다른 재밌는 영상도 많아요
-
저런애들 겉만 멀쩡하면 아무차별안겪나?
-
3개월 다니고 때려침
-
꿈을 향해 달리기
-
여중 여고 남중 남고 캠퍼스처럼 같이 있는 사립재단이라 사실상 여기 중고등학교 쭉...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 돌아버리겠네 진짜 가산점 왤케힘드냐
-
지방살고있는데 돈은 문제없구요 어디가 더 좋나요?
-
초6수준 글쓰기가아닌데?
-
사실 네이버카페 포함하면 유치원부터긴함
-
라인좀ㅠ 6
내신 1점 후반인데 교과우수로 고대 안되려나..?
-
다들 급하게 돈 많이 필요할땐 어떻게 벌어? 쿠팡말고 추천좀
-
이원준쌤 커뮤픽 2
원준쌤 자꾸 커뮤픽이라구 하셔서 친구들이 이원준쌤 들을거라하면 커뮤니티하냐고 놀려요 ㅜ(하긴함)
x+3 -> 3은 0차 아닌가요...?
아! 상수항 제외하고요!! 죄송합니다
...문득 이 질문을 보면서 - 저도 제대로 답은 못하겠지만 - 처음부터 공부 다시 해야겠다는 생각이 드네요. 차수가 음수면 분수함수고, 다항함수가 아닌가...? 싶기도 하고, x의 루트2승이면 어떡하지...? 싶기도 하고... 아무튼... 답은 못드리지만 배워가요-
지수법칙 유도과정생각해보시기 바랍니다
일단 지수법칙은 정수에서 정의합니다
그리고 a^0을 정의하고 음수로까지 확장합니다
그리고 이것을 분수로서 정의하죠
그리고 거듭제곱식을 정의하고 유리수로서 정의합니다. 즉 분수꼴은 무리식이라는것을 증명할수있죠
실수는 교과과정상 그냥 받아드립니다
대충 이정도에서 서술하면 적어도 감점은 없을것같네요
오... 생2괴물 키랄님이 댓글을 달아주시다니..ㅎㅎ
지금 문제의 조건이 x^a 에서 a가 0초과라고 제시되어 있는데 이걸 미분한 ax^(a-1)에서 a-1이 0이상이라고 봐도 되는지 궁금해서요~~
지금 정확히 어떤지점이 문제가 되는지 명백하게 다시 좀 써주시겠어요?
만일 a가 '음수가 아닌 정수'라는 제한조건이 안나와있다면 a-1을 0이상이라고 볼수 없습니다(음수가 될 수도 있기 때문에)
그런데 만일 a가 '음수가 아닌 정수'라는 제한조건이 걸리게 된다면 a-1을 0이상으로 봐도 무방해서 이렇게 질문 드립니다
그런데 밑에 lemonaid님이 올려주신 거에 따르면 후자가 맞는것 같네요!!
정말 감사합니다~
다항함수의 미분에서 양수일때는 인수정리를 통해증명하고 음수는 몫의미분으로 증명하고 유리수는 음함수미분 실수는 로그 미분으로 증명된상태인데 어떤지점이 이해가 안가시는건가요?
일반적으로 차수내리고 하는거를 그냥 배우긴하지만 일단 교과과정내에서는 실수까지 확장시켜놓고 학습시키고 있습니다
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
차수가 실수로 확장되는 건 다항식으로 보지 않는 것 같은데... 제가 틀렷나요?
차수를 실수로 확장시키는 건 따로 '다항식'이라고 부르지를 않는 것 같습니다
제가 면접 문제를 풀면서 이해가 안된 것은 문제에 '다항식'이라는 조건이 그냥 툭 던져졌는데 여기에서 x의 차수를 0이상인 정수로 봐야되지 않을까~ 싶어서 질문드렸습니다!! 이렇지 않으면 문제가 안풀려서요~~
P.S:UAA모의고사 너무 잘풀었습니다!ㅋㅋ(공동저자분 중 1명 저희 학교..ㅋㅋㅋ)
아 약간 혼선이 있었네요
제 말의 의중은 그 알고계시는 미분법은 다항함수던 아니던 편하게 사용할수있다는 의미였고 다항식의 정의는 음이 아닌정수가 맞습니다
예를들어 기출에서도 극한문제에서도 다항함수라고 주어진경우에는 차수를 결정지을수있다
여기서도 자주 사용되는 이론이기도 합니다
제가 말씀드리고 싶은거는 지수의 확장에서 배운내용에 의거하면 음수인경우는 분수꼴이므로 다항식이 아니고 약분되지않는 유리수형태인경우 무리수임을 인지하게 함으로서 다항식이 아님을 그냥 고교수준적으로서 설명해드릴려는 의중이었습니당
네 키랄님 정말 감사합니다!
넵! 도움되셨다면 저도 기쁘네요!
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
정말 감사합니다!
음이아닌 정수 n에 대하여 fx= anx^n+an-1x^n-1 +...+a0 [an~a0는 실수]를 다항식 이라고 부르는거 아닌가요?