이해원 마지막문제 질문
Fx가 x제곱을 가지는 정확한 이유 아시는분 있냐요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
집 가기
-
걍 쳐잔다 아니 아까 집 올때 같이 사올걸 ㅅㅂㅅㅂㅅㅂ
-
내년에 사탐할건데 경제 ㄱㅊ나..?이번에 물1 2컷일듯
-
이쁜남자는 개좋긴해
-
친한 컨설턴트가 무조건 45래 얘는 무슨 근거로 45라고 확신하지?
-
갑자기 수시가 붙으면 이미 결제한 진학사는 어떡하나 생각이 드는데 이거 환블 안되죠
-
회사생활 절대 싫으면 맞는 말인 거죠? 돈보다 워라벨인 전제 하에 저도 동의하는데...
-
수학 현강 0
김범준 현강 신청햇는데여 어랴울까봐 쫄려서 정병호꺼도 일단 신청해뒀는데 스블...
-
경희대 학종 네오르네상스 조기발표 안하나요?
-
지금부터 해야함
-
피램 2026 1
내년 국어 피램커리탈건데 혹시 2026버전 언제쯤 나오는지 아시나요? 12월...
-
수능안본분탕…
-
사람도없고 재미도없고..
-
ㅇㅇ
-
연애썰풀어보ㅓ 7
ㄱㄱ
-
뻥임뇨
-
님들같으면 어디감
-
일정 실력 만들어 놓으면 1년동안 공부 안해도 1719 빼고 다 맞음 근데 1년동안...
-
확 92 84 미 87 78 기 88 79
-
omr 잘못썼을까봐 진짜 개불안함
-
오늘 보닌 4
샤워안함
-
이거 ㅈㄴ 말려야하는 거 맞죠..? 조합도 레전드라..
-
실모 풀 거 다 떨어져서 써킷 X 푸는데 솔직히 이번 수능 문제 이걸로 교체해도 될...
-
도대체 왜 과탐1, 사탐1 이렇게 섞는지 알려주세요 사탐2이랑 뭐가 달라요? 내년엔...
-
저 유명인사임? 5
??
-
군수 질문 4
현역 고3입니다 , 올해 수능 망했는데 집안에서 재수 반수는 반대해서 군수 할려고...
-
진지하게 정시 국숭세단 각이어서 낼부터 준비해서 중논 갈까요….
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
ㄹㅇ 전과목 합해서 22만명이라는 거임?? 한 과목씩 따로 보면 4만명 정도라는 거 진짜임?
-
인서울 전화기가 목표긴한데
-
작수 수시였다가 6광탈당하고 정시로 인서울 끝자락가서 올해 반수했습니다 (작수...
-
영어 특히 해석연습이나 구문교재론 천일문 외에 또 추천해주실 교재 있나요? 혹시...
-
선지에 답이 없는듯
-
본인 고2 수학 3모 9모 10모 다 3점 한 두개씩 틀려서(미분 잘못하거나 계산...
-
키보드 ㅊㅊ좀 12
커세어 로지텍 정도밖에 안알아봤는데 ㅊㅊ좀
-
기적을 바랫지만 그러한 기적은 역시나 저에게 들어오지 않았고 이제 20대지만 20대...
-
아니면 아주대 낮은과는 가능할까요?
-
ㅈㄱㄴ
-
처음엔 학점때문에엿는데 이젠 빠져나올수없음뇨..
-
고2이고 물리 (특히 역학)에서 시간이 많이 부족하고 20분컷을 한다는 사람은...
-
중대 어디까지 되나요 반영 비율이 달라져서 컷이 많이 바뀌나요?? ㅠㅠㅠ
-
외대 경제 썼습니다 진짜 고민 ㅈㄴ되는데 조언좀 해주실분
-
이게 오르비에 많은거임? 아니먄 한국에 많은거임? 아니면 원래 인간은 멍청한 인간이 많은거임?
-
못해도 동이나 홍은 가고싶은데 가능할까요 학과는 상관없어요
-
현우진 선생님의 뉴런이 너무 좋다는건 알겠는데, 아이가 수1,수2를 일반...
-
전 남자임뇨
-
진짜 좀 하 ㅅㅂ!! 그냥 다음학기까진 하고 가야되나 아니야 그런다고 연인이 생길까..?
와 이거 풀 때 ㅈㄴ 고전했는데
헐 정시의벽행님도 고전했다고요?ㄷ.ㄷ
케이스만 걸러드릴게요
함수 정의에 의해서
g(0)=f(0)/(f(2)-8) 아니면 1/8인데
방정식 g(x)=0의 근이 x=0이니까 f(2)=/=8이고 f(0)=0
f(x)랑 y=8이랑 접하게 되면 그 점을 <-2,-8>만큼 평행이동시킨 점에서도 f가 x축에 접해야되는데 삼차함수니까 그건안되고
그러면 f(x)랑 y=8이랑 만나는 점을 <-2,-8>만큼 평행이동한 점에서 f가 x축이랑 만나면 되겠고 거기서는 g=0이 아니라 1/8이 됨
만약 f가 x축이랑 세 점에서 만나면 g=0은 그러면 실근이 2개가 돼버려서 안됨
한점에서 만나면 f=8인 점이 f=0인 점을 날려버려서 g=0 실근이 없고
그럼 f는 x축이랑 두 점에서 만나는데 그림에서 f=8인 점을 <-2,-8>만큼 평행이동시킨 점이 x축과의 접점이 된다면 그때는 g=0은 실근을 한개 가지긴 하는데 불연속임
극한값은 이차/일차라 0인데 함숫값은 정의대로 8분의1이니까
그러면 평행이동시켰을 때 접점아닌교점이랑 겹치겠고 그림처럼 되겠네
아님말?고
함수 g(x)가 조건(가)를 성립시키기위해선 f(a+2)=8인 모든 a에서의 f(a)=0이고 lim x->a에서의 g(x)의 극한값이 1/8로 수렴해야함을 알수있고 조건(나)를 성립하기위해선 g(x)는 x=0에서 함숫값0을갖기에 g(0)=0임을 알수있음.
i)모든실수x에서 f'(x)>=0이면 f(x)는 x=0에서의 함숫값은 0임을 조건(나)를 성립하기위한 조건으로부터 알수있는데 그렇다면 i)의 f(x)=0의 근은 항상 x=0에서만 생성됨을알수있음.(f(x)는증가함수이기때문)
만약 f(x+2)=8의 근이 x=a라고 하면 a=0이아니면 f(a)=0이 아니기에 g(x)는 모든실수에서 연속이아니기에 a=0이여야함.근데 a=0이면 lim x->0에서의 g(x)의 극한값은 0이 나오기에 [조건(나)]
f(a+2)=8을 만족하고 f(a)=0를만족하는 x=a에서 g(x)의 극한값이 1/8이라는 함수 g(x)의 조건에 모순된다.
따라서i)의 경우는 성립하지X
그러므로 ii) f(x)는 극대와 극소를 갖는 삼차함수가됨을알수있다.
f(x)=0에서 x=0임을 언제나 만족하므로 f(x)=x^nXq(x)(n=1혹은n=2,※n=3이면 f(x)가 i)의 집합의 함수가 되어버림)
만약 n=1이면 f(a+2)=8인 모든a에대해 f(a)=0임을 i)로부터 알수있는데 a=0이 아니면 f(a+2)=8인 a에대해 f(a)=0이 아니기에 성립하지않고 a=0이면 g(x)의 x=0에서의 함숫값이 0이 나올수없으므로 이는 성립하지않는다.
따라서 f(x)는 x^2을 인수로 가져야만한다.