엄밀한 수학(1): 구간 별로 정의된 함수의 미분 가능성
얼마나 오래 갈 지는 모르겠지만, 고등 수학에서 빈번하게 다뤄지는 몇 가지 주제에 대하여 조금 엄밀하게 다뤄보는 글을 쓰려고 합니다. (주제 추천 받아요.)
엄밀한 수학이지만, 수학을 전공하지 않은 고등학생 정도의 수학 지식을 갖고 있는 분들도 최대한 이해할 수 있도록 써 보려고 합니다.
첫 번째 주제는 [구간 별로 정의된 함수의 미분 가능성] 입니다.
[2021학년도 9월 모의 평가 10(나)]
위 문제와 같이 구간 별로 정의된 함수의 미분 가능성을 묻는 경우, 미분 가능성의 정의보다는 대부분 다음 두 가지 식의 연립으로 해결합니다.
(i)은 [미분 가능하면 연속이다.]의 성질을 이용하여 각각의 식에 1을 대입하여 같다고 놓고 구합니다.
(ii)는 각각의 식을 미분하고 1을 대입하여 같다고 놓고 구합니다.
(i)은 자명합니다. 문제가 되는 부분은 (ii)의 논리입니다. (ii)는 "도함수는 x=1에서 극한값이 존재한다."는 것을 의미합니다. 이를 엄밀하게 규명하기 위해 몇 가지 명제를 떠올려봅시다.
명제1: "미분 가능하면 도함수가 연속이다."
수학을 조금 깊게 공부해 본 성실한 고등학생이라면 위 명제1이 거짓임을 알고 있을 것이고, 또 그 중 대다수는 그의 반례도 알고 계시리라 생각합니다. (단, 그 역은 성립하죠.)
그렇다면 결론부의 조건을 조금 더 약화시켜 생각해봅시다.
명제2: "미분 가능하면 도함수의 극한값이 존재한다."
명제2 역시도 명제1의 반례로 어렵지 않게 거짓임을 보일 수 있습니다.
그럼, (ii)의 등호가 성립함을 보장해주는 근거가 되는 명제는 무엇일까요? 우리는 미분 가능한 함수에 대하여 그의 도함수의 극한값이 존재한다는 것은 알 수 없지만, 최소한 문제 조건으로부터 도함수의 좌극한과 우극한이 각각 존재한다는 것을 알 수 있습니다. 즉, 다음 명제를 생각해볼 수 있겠습니다.
명제3: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수의 극한값은 존재한다."
위 명제3이 참이라면, 우리의 최종 목적인 (ii)의 논리적 근거를 마련할 수 있습니다. 위 명제3의 참을 설명해주는 것이 바로 다르부 정리(Darboux's Theorem)입니다.
고등학생이 이해할 수 있는 언어를 기반으로 다르부 정리의 내용을 살펴봅시다. (증명은 "Introduction to Real Analysis by Robert G. Bartle"을 참고했습니다.)
다르부 정리 (Darboux's Theorem)
: 함수 f가 닫힌 구간 [a, b]에서 미분 가능하고 k가 f'(a)와 f'(b) 사이에 있을 때,
f'(c)=k를 만족시키는 c가 열린 구간 (a, b)에 존재한다.
즉, 미분 가능한 함수의 도함수는 사잇값 정리의 결론을 만족시킵니다.
[증명]
미분 가능한 함수 g를 다음과 같이 정의합시다.
g가 연속이므로 최대-최소 정리에 의해 닫힌 구간 [a, b]에서 최댓값을 가집니다.
이므로
g는 x=a에서 최댓값을 갖지 못합니다. 이와 비슷하게, x=b에서도 최댓값을 갖지 못합니다.
즉, 닫힌 구간 [a, b]의 경계에서는 최댓값을 갖지 못하므로 최대가 되는 지점을 x=c라 할 때, c는 열린 구간 (a, b)에 존재합니다. 따라서 다음이 성립합니다.
Q.E.D
다시 우리의 원래 목적으로 돌아가서, 위 다르부 정리에 의해 미분 가능한 함수의 도함수가 좌극한과 우극한이 각각 존재한다면 반드시 그 두 값이 같아야 합니다. 그리고 더 나아가 그 지점에서 도함수는 반드시 연속이어야 합니다. 이 명제3을 다르부 정리에 의해 더 강한 조건으로 바꿔 다음 명제4가 참임을 알 수 있습니다.
명제4: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수는 그 지점에서 연속이다."
처음의 문제에서 f'(x)의 x=1에서 좌극한과 우극한이 각각 존재하므로 위 명제4에 의해서 f'(x) x=1에서 연속입니다. 따라서 (ii)의 등호가 성립합니다!
제 글이 그닥 많은 사람들이 읽지는 않지만 ㅎㅎ;; 개인적으로 정리해보고 싶었던 주제였습니다. 조금이나마 도움이 되셨으면 좋겠습니다. 감사합니다:)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
삼반수 고민 0
안녕하세요 05년생이고, 25수능 재수하여 응시했습니다. 24수능 언미생지...
-
지듣누 0
ㅖㅏ
-
개웃기네 이게뭐냐
-
아니 뭐 제가 정상적인 입결일때는 못가는게 맞으니까 딱히 억울할게 없거든요? 근데...
-
축하해주세요 19
26렙
-
올라오자마자 사라지네
-
다들 자나
-
사진은 건지긴 했는데... 다시 뺐을지 말지...
-
정글 연습중인데 같이 할 사람
-
자취할때 돈없어서 쿠팡에서 컵라면 소컵 2만원에 24개인가 사서 1달식비...
-
근데 게이는 아닌것같음 야덩은 잘만봄
-
베르테르 9번 4
멀쩡하게 생겻네
-
하난너야 그게 나야
-
김치왕뚜겅이 먹고싶구나..
-
왜 두시지 그냥잘까
-
나라가 어떻게 되련지… 답글은 낼 달게요 자야해서ㅜ
-
피부를 고쳐야해 5
자야해
-
고등학교에 다시 다녀보고싶구나
-
그래서울었어
-
Ai 이상함 0
지혼자 왔다갔다거림
-
재수 시립대면 삼반수 어느 라인까지 올려야 의미 있다고 보시나요
-
딩리런 사진 넣으니까 체스황자 막 이렇게 뜨네 ㄷㄷ
-
코트 ㄹㅇ맘애드네 10
이 코트 너무 좋아.
-
뭘해야행복함? 8
정작 목표를 달성했을때도 잠깐 행복하고 말고 목표를 이루기까지의 과정은 고통스럽고...
-
이제자야지 1
옯바~
-
미기확 다넣고 다같이 시험 보면 좋겠는데
-
24고경의 두려움도 있었고 연대의 사탐가산으로 고연 문과성적의 과탐응시자가 굳이...
-
자니? 3
자는구나..
-
연예인 사진 넣으니까 ㅆㅅㅌㅊ 점수 나오고 김종익T 사진 넣으니까 ㅅㅌㅊ 점수...
-
어렵고 불쾌해서 재밌긴한데 힘드네..
-
건축 인증 2
-
아이언인데 버스태워주세요 ㅜㅜ
-
문자와서 확인하니 합격 떠있으면 기분좋겠다
-
신난다 신나 요줌 실력 느는걸 체감하는 중이라 국어가 넘 재밌음
-
꼭마
-
귀찮아서 한번에 투표 만듦 과목별로 하나씩 해줘 국영수니까 총 3개임 대성패스 있고...
-
차단당할까봐 두렵네
-
저도 고3 평가원 올1 교육청 커로 2중반 이렇게 나왔는데 내신국어는 한번도 3등급...
-
대학 들어가면 자기는 친구도 생기고 연애도 할 거라는데 아무 노력도 안 하면서 왜...
-
8번까지 풀엇는데 11
서술 오류 하나 과조건 하나 찾음 잘 해내고 잇는 듯하다
-
저오늘 생일이에요 25
감사합니다
-
아마 인간이 아닐거야 근데 나 고백받은적 0번인데
-
얘는!
-
윽건이 열받내 20
기벡으로 유명해진거 아니셧습니가 왜 버렷음..
-
심심해서 응원가 써봄 10
진리의 빛이여 조국의 미래여 누가 길을 묻거든 관악을 보게 하라 겨레의 등불이여...
-
현우진 기하 8
ㄹㅇ순수의문인데 왜 우진티는 기하 취급도 안하심? 돈 안되어서…?
-
강사들이 나서서 기트남어라고 조롱하고 유기하니까 학생들도 하면 좃대는 과목이구나...
슈크란