다항식, 다항방정식, 다항함수
다항식입니다. 이런 식으로 생겼습니다.
독립변수 x의 값에 따라 하나의 값이 정해지는
종속변수 y에 대하여 y와 x의 관계를 우리는 함수라 합니다.
정확히는 독립변수 x와 x에 대한 종속변수 y에 대해
y를 x에 대한 함수라고 합니다.
쉽게 말해 x=1 대입했을 때 y값이 정해지면 함수라는 것입니다.
y=x+3은 함수입니다.
x에 뭐 하나 집어넣으면 y도 뭐 하나 나오기 때문입니다.
x^2+y^2=9는 함수가 아닙니다.
x=1 집어넣으면 y값이 2개가 존재하기 때문입니다.
평면 상에서 x^2+y^2=9의 그래프와
x=1의 그래프의 교점이 곧
x^2+y^2=9에 x=1을 대입하는 상황을
뜻합니다. y값은 2루트2 혹은 -2루트2가 됩니다.
(y에 대한 이차방정식의 해를 찾는 과정)
y=루트(9-x^2)은 함수입니다.
x에 뭐 하나 집어넣으면 y도 뭐 하나로 나옵니다.
예를 들어 x=1일 때 y=2루트2이고
x=-1일 때 y=2루트2이기 때문입니다.
보다 자세한 내용은 수학(하)에서 함수 공부할 때
살펴보는 것으로 합시다.
독립변수 x와 종속변수 y에 대해
y가 x에 대한 다항식으로 작성되면
y를 x에 대한 다항함수라고 합니다.
앞서 다항식의 예로 들었던 식들에 관한
다항함수의 그래프가 각각 다음과 같습니다.
이때 일차함수와 이차함수를
중학교와 고등학교 1학년 때 배우고
삼차함수와 사차함수를 고등학교 2학년 때 배웁니다.
일차함수, 이차함수는 '특성이 이러하다' 식으로 배우고
삼차함수, 사차함수는 '도함수'의 개념을 활용해
일차함수, 이차함수의 그래프로부터 그래프를 그립니다.
수학2에서 학습합니다.
이차함수는 보시다시피 빗살무늬토기의 단면처럼 생겼습니다.
최고차항인 이차항의 계수가 양수이면 빗살무늬토기이고
최고차항 계수가 음수이면 뒤집어진 빗살무늬토기입니다.
때로 이렇게 이차함수의 그래프가 x축과 만날 수 있습니다.
다시 말해
어떤 이차함수가 y값으로, 즉
함숫값으로 0을 지니는 때가 존재할 수 있습니다.
이것이 이차방정식입니다.
다시 말해 식을 정리했을 때
한 변에 어떤 문자에 관한 이차식,
다른 변에 0이 위치하도록 할 수 있다면
그 등식을 이차방정식이라고 합니다.
이 방정식을 만족시키는 x값을 찾는 것을
이차방정식의 해를 구한다고 하는데
주어진 이차식을 AB 꼴로 정리할 수 있다면
A=0 or B=0을 만족하는 x값을 찾는 방식,
인수분해를 통해 해를 구할 수 있습니다.
혹은 모든 이차식을 A^2+B 꼴로 변형할 수 있음을
활용할 수도 있습니다. 완전제곱식의 성질을 이용하는 것!
이제 양변에 루트를 씌워주면
경우에 따라 1가지 혹은 2가지 x값을
얻을 수 있습니다. 허수 단위를 도입하여
루트 안이 음수가 될 때도 이차방정식의 근을 논할 수 있습니다.
복소수 범위에서요! 하지만 보통은 실수 범위에서 논합니다.
이를 확장하여 n차 다항식에 대해
n차함수와 n차방정식 모두 논해볼 수 있습니다.
다항함수는 앞서 이야기했듯이 수학2에서 미분을 공부한 후
그래프를 그릴 수 있게 됩니다. 근데 이것은 연습 목적이고
실제로는 컴퓨터 프로그램에 수식 입력하시면 그래프 그려줍니다.
다항방정식은 앞서 보았던 이차방정식의 해를 찾는 과정과 마찬가지로
인수분해를 통해 A=0 or B=0 or C=0 or ... 식의 사고를 활용하거나
특정 차수의 다항식을 특정 형태로 변형할 수 있음을 활용하여
근의 공식이라 부르곤 하는 무언가를 작성해볼 수도 있습니다.
예를 들어 삼차방정식의 근의 공식을 유도해봅시다.
참고로 앞서 봤던 이차방정식의 경우는
이차방정식의 근의 공식이라 부르며 수학(상)에서 학습합니다.
이차방정식의 경우에 (x+A)^2+B=0 꼴로 식을 변형할 수 있음이
근의 공식 유도 과정에 중요하게 존재했었고
삼차방정식의 경우엔 평행이동을 통해 삼차함수의 이차항 계수를 0으로,
혹은 x에 x+k꼴을 대입해 삼차식의 이차항 계수를 0으로 만드는 과정이
근의 공식 유도 과정에 중요하게 존재합니다.
이후 uv=-\frac{1}{3a} \left(c-\frac{b^2}{3a} \right) 을 만족하는
(u, v)에 대해
uv에 w^3을 곱해도 uv이므로
(u, v)와 (uw, vw^2)와 (uw^2, vw)에 대하여
세 가지 순서쌍에 대해 하나로 묶인 순서쌍의 두 값끼리
더해준 것이 삼차방정식의 복소수 범위에서의
세 근 (일반해) 이 된다.
사차방정식은 각자 찾아보는 것으로 하고
5차 이상의 다항방정식의 근의 공식은
존재하지 않는다고 하는데...
자세한 것은 갈루아 이론과 등등을 찾아보는 것으로 합시다.
아무튼 다항방정식의 근의 공식은 4차 이하의 다항방정식에 대해
유도할 수 있으며 교육과정 내에서는 1, 2차 방정식의 근의 공식까지
학습하고 3, 4차 방정식의 근의 공식은 배우지 않는다는 것.
3, 4차 방정식의 해를 구할 때는 특수한 방법들로 풀리는 경우만을
다룬다... 정도로 기억해두시면 되겠습니다.
즉, 해의 존재성을 따지기보다 공부한 방법론 잘 적용하는 것이
고등학교 1학년 수학의 목표이다!라고도 한 번 얘기해볼 수 있겠네요.
p.s.
고1 수학에서 학습하는 대부분의 곱셈공식, 인수분해 공식은
분배법칙에 따라 직접 전개해봄으로써 자연스레 유도해보고
외울 수 있다고 느꼈습니다.
그런데 저 두 개는 '이걸 어떻게 떠올리지' 싶은 느낌이
조금 더 강하다고 생각해서 그냥 외워주시면 좋겠습니다.
이런 식의 사고의 흐름도 이어가볼 수 있겠죠 ㅎㅎ
마지막 a=b=c 부분은 '만약 x^2 꼴이 0이 아닌 값을 지니면?'이라는
질문을 3번 반복해보시면 좋겠습니다.
귀류법이라고도 합니다.
후에 체계적인 경우의 수 분류가 필요한
귀납적으로 정의된 수열 문항과
다항함수 그래프 개형 추론 문항 등에서
유용하게 쓰이는 사고 과정이니
관심 갖고 지켜보시는 것도 좋겠습니다.
수능 수학에서뿐만 아니라 일상에서도
발생할 수 있는 다양한 경우의 수에 대해
어쩌지 어쩌지 하고 있을 시간에
일단 뭐 하나 잡아서 해보고
되면 좋고 안되면 다른 방법을 시도해보는 식의...
사고 과정으로 이어서 바라볼 수도 있으니
귀류법 자체를 찾아보시는 것도 좋겠습니다.
가장 흔한 사례는 루트2가 왜 무리수인지를 증명하는 부분!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개국한지 벌써 11일
-
인생 망한 거 같고 수능을 못봐서 인생이 망할 거 같고 수능을 잘봐도 행복할 거...
-
밤새 비왔나 0
땅이 축축하네
-
그냥 와랄랄랄랄랄라
-
ㅠㅠ
-
whw기련아진짜 0
화염포 마렵네
-
ㅈㄴ 신기함 오르비에 은근 많더라
-
국어 노베인데 1
서점 가서 국정원 독서 문학 사려는데 국정원 독서 문학 책 사도 괜찮음?
-
처음으로 차단함 수능 전에 굳이 키배 뜨면서 시간낭비 하기 싫음 생각할수록 짜증나게 하네 ㅋㅋㅋㅋ
-
ㄹㅇ 엄청 후련하고 도파민 폭발함 ㅋㅋㅋㅋ
-
이제서야 느껴 우리 공간
-
2022 시발점 찍으면서 강의 및 교재에 개선된 부분이 있으면 편집해서 2015...
-
방금 최소 10마리는 잡음.. 아니 나 이 좁은 자취방에서 대체 몇 마리와 동거 중인 거임
-
에휴
-
난이도대결 1
ㅈㄱㄴ
-
실모 난이도가 어렵든 쉽든 항상 80~88점대가 나오네 벗어날수가 없다...
-
올해 메디컬최저 1
사탐런이 가능한 학교들은 전부 올라가겠죠? 근데 건수나 동약같은경우에는 걍 경쟁률이...
-
타지에서 시험쳐야되서 부득이하게 전날 모텔갈거 같은데 전날+아침에 공부할거 가져가면...
-
깔아줄게.
-
어떻하나요
-
수능에서 중요하나요? 1순위로 외워야 되나요?
-
확통 기출강의 0
ㅊㅊ해주세요 대성으로요
-
이게 뭐야 오늘도 평화로운 오르비 오늘은 지인선 모의고사를 풀어줄 건데요 시간...
-
지구과학 앞부분 잊어버려서 복습할겸 전체단원 한번더 푸려고하는데 뭘 추천하시나용...
-
먼가 붕뜨는 느낌인데 미적에서는 더 많이 나오나요? 흠
-
방정식과 부등식 theme13 2번째강의임 무려 현강시절 윽건이를 볼 수 있음
-
주어진 시간이 끝나기 전에는 절대 먼저 포기하면 안 된다는 것인듯… 스스로에게 해주고 싶은 말이네요
-
병신같은 교수가 진도 다 못 빼서 이번주에 보는데 ㄹㅇ ㅈ같다 진짜 그냥 2학점...
-
그냥 병신인거 같다. 열품타 올해꺼만 2200시간 찍혀있는데 잘못 측정한거 다...
-
이거 유튜브댓글 많이보이던데 밈임?
-
왜 잠이 안오냐 0
ㅅㅂ
-
주말 전투휴무 제외임
-
61분 89점 비문학 -5 문학 -4 화작 -2 비문학 실리콘 지문에서 5점 나감...
-
스토리 올리는 사람도 몇 명 없네
-
딱 이거만 다 하고 들어가야지..
-
지가뭔데 지한테 존댓말로 꼬박꼬박 부탁을하라고 요구를하지 반말로 하는게 훨씬 편한데...
-
작년 3덮인가 4덮에 나왔었던 거랑 비슷한 문제인 것 같은데 저렇게 인테그럴...
-
화요일부턴 7시반~8시 사이엔 일어나야 되는데 ㅈ됐네
-
독서 기출 지문 다시 읽으려 하는데 제가 예전에 분석하면서 필기해놨던 교재 읽으면서...
-
아 이제 잔다 0
갑자기 이어폰이 한쪽이 작동이 안돼서 기다리고있었는데 안되겠어 닉네임은 바꿨습니닼
-
다시풀으면서 피드백할거 추천받아요
-
여르비한테 쪽지 받음?
-
가능할까요…?ㅠㅠ 하루에 3~4번씩은 들을려고 하는데 지금은 3~4개 틀리는거 같아요
-
할건해야지..
-
6모보다 극혐인 점수는 처음이네;;
-
생명 N제 한번 싹 풀려고하는데 올바원, 프로모터 중에 뭐풀까요? 최저라라 3등급...
-
수능액땜 1
밤열두시에 화장실 갈라고 나갈라는데 방문 손잡이 고장나서 갇힐 확률 몇퍼(전형적인...
첫번째 댓글의 주인공이 되어보세요.