칼럼) 오비탈 n축 (당신이 화1에서 말렸던 이유) (feat. 좌표평면)
선 좋아요 후 감상
22수능까지의 화1과 23,24수능의 화1의 결정적인 차이는
바로 주양자수, 오비탈이었습니다.
23수능 11번
이 문제 이후로
각종 사설 문제에서 괴랄한 주양자수, 오비탈 문제가 많이 나오기 시작했습니다
특히 n+l+ml=3인 오비탈에 있는 전자수<<<이런 조건들도 나왔고요
이런 문제들이 화1을 극악의 타임어택 과목으로 만들었습니다.
동시에 저런 문제들을 얼마나 잘 넘기는가가
화1에서 주요 이슈가 되었죠.
2,3페이지, 특히 2페이지에서 저런 문제들 때문에 말려서 시험 운영이 꼬인 적, 다 한 번씩은 있으실 겁니다.
저도 그랬고요.
그래서 '이런 유형의 문제들을 쉽게 해결할 수 있는 방법은 없을까?'라는 고민을 계속 했습니다.
첫 번째 방법은 반복해서 나오는 조건들을 외우는 거였습니다.
하지만, 낯선 조건이 하나라도 나오면,
"어 이거 외운 거에 없는 건데?"라고 당황하면서 오히려 더 말렸죠.
결국, 키는 '누가 머릿속에서 바로바로 조건에 맞는 결과를 떠올리느냐'인데,
이걸 누가 모를까요...
그게 됐으면 진작 됐겠지...
그럼에도, 어떻게든 방법을 찾아야 했습니다.
그래서, 생각해 낸 게,
1. 조건에 맞는
2. 그런데 일반화된
3. 시각적인 생각의 틀
을 만드는 것이었습니다.
생각해보면,
합성함수에서 많이 쓰는 스킬인 n축,
윤도영 선생님의 matrix
모두 일반화된 틀을 요구하죠
그리고 저 두 스킬은 정말 유용하고요.
시각화의 관점에서는 타의 추종을 불허하는 스킬들입니다.
그래서 이런 생각을 해봤습니다.
일단, 주로 나오는 조건이 n하고 l이니까, 둘을 변수로 하면서 시각화하는 방법은 없을까?
저희가 가장 많은 쓰는 틀이 있죠.
"좌표평면"
n을 x축으로 두고, l을 y축으로 두면 어떨까?
일단 1s부터 3p까지의 오비탈을 좌표평면에 모두 표시해보았습니다.
자 여기에 n+l이라는 조건을 적용하려면?
n+l=k 꼴의 직선을 표시하면 되겠죠.
n+l=1,2,3,4를 표시하면 다음과 같습니다.
n-l의 경우는, 기울기가 1인 직선을 표시하면 되겠죠.
이러면 n+l, n-l값을 일일이 외우지 않아도 손쉽게 머릿속에서 떠올릴 수 있겠네요
자, 이제 ml이 문제입니다.
3차원으로 구현하는 건 오히려 머릿속으로 떠올리기 힘들기 때문에 전혀 실용성이 없죠.
그래서 그냥 2차원 좌표평면에다가 우리가 아는 오비탈 전자배치를 넣었더니, 훨씬 더 낫더군요.
좀 더 시각화해보면, 다음과 같이 나옵니다.
ml값을 색깔로 구분하면 다음과 같습니다.
별거 아닌 것처럼 보이지만,
저는 ml=0인 거 계산할 때 무의식적으로 s 오비탈을 빼먹는 경향이 있었어서...
시각화해서 나타내더니 좀 나아지더라고요
l+ml을 정리해볼까요? y좌표에다가 ml값만 차례로 더하면 되겠네요.
l-ml은 y좌표에다가 ml값을 빼면 되겠고요.
n-l+ml=2에 해당하는 오비탈을 한 번 찾아보겠습니다.
n-l=1, n-l=2를 먼저 찾고,
n-l=1에서는 ml이 1이어야 하니까 이 직선을 오른쪽으로 한 칸 옮기면 되고,
n-l=2에서는 ml이 0이어야 하니까 직선을 그대로 놓으면 되겠네요.
n-l=3에서는 ml이 0인 곳만 존재하므로 찾을 필요가 없고요.
그러면 이렇게 나오겠네요.
뭔가 이 과정이 번거롭다는 생각이 드실 수도 있는데,
이거 그냥 직선 쓱싹쓱싹해서 조금만 이동시키면 바로 시각화가 되니까 시간을 줄일 수 있겠죠.
실전에서는 좌표평면을 일일이 그리기가 너무 번거로우니까,
다음과 같이 약식으로 나타내는 게 좋겠네요.
저는 수능에서 이 스킬을 쓸 때, 그냥 저거 하나만 그리고 머릿속에서 계산해서
오비탈 문제를 풀 수 있었던 거 같습니다.
자 이제 이걸 이용해서 9모 7번 문제를 풀어보겠습니다.
1) n+l부분에서 기울기 -1인 직선 3개 그으면
1과 2인 부분은 하나만 나오니까 나:2s, 다:1s인 건 알 수 있을 거고요
2) 두 번째 조건에 의해서 가: 2p(-1),
3) 세 번째 조건에서 l+ml이 (라)가 가장 크다고 했으니 y좌표 값이 더 크면 되겠네요.
(라)도 확정이 됩니다.
6모 15번 문제도 풀어보죠.
두 번째 조건을 정리하면 (나), (라), (다)의 x좌표 대소관계를 정리할 수 있겠네요.
첫 번째 조건에서 (나)는 아무리 커봐야 2라는 것도 알 수 있고요.
x좌표에서 (나)>(다)이므로 (나)가 2s, (다)가 1s임을 알 수 있습니다.
(라)의 ml값이 (나)보다 크니까 1,
세 번째 조건에 의해서 (가)의 ml값이 -1이므로 정리하면 다음과 같습니다.
자, 이제 마지막 수능 문제입니다.
1번 조건) n-l은 (가)>(나)이다.
일단 n-l은 1이랑 2밖에 없으니 (가)는 2s임을 확정지을 수 있겠네요.
2번 조건) l-ml은 (다)>(나)=(라)이다.
l-ml값은 y좌표에서 ml 값 차례로 빼면 되니까 다음과 같이 표시하면,
두 번 이상 나오는 값이 0밖에 없으니 나와 라의 후보를 좁힐 수 있겠네요.
3번 조건)(n+l+ml/n)은 (라)>(나)=(다)이다.
이제 세 번째 조건은, 주어진 식을 1+(l+ml/n)으로 변형할 수 있고,
l+ml/n값이 동일한 경우가 0밖에 없으니까 l+ml값이 0인 것 중에 (나)와 (다)가 있다고 하면 되겠네요.
주어진 것을 모두 정리하면 다음과 같습니다.
글로 일일이 설명하느라 복잡해보일 수 있습니다.
하지만, 간결한 시각화라는 특성에 주목하면, 그 효과는 결코 적지 않습니다.
(그냥 그림만 그려서 직접 정리하면 느끼실 거에요.)
제가 며칠 전에 과탐 시험지 운영에서 어려웠던 점이 무엇이었는지 제 글에서 물어본 적이 있었습니다.
근데, 정말 공감이 되는 댓글이 하나 있더라고요.
오비탈이 안 보이면 한없이 안 보인다....정말 공감되는 말입니다.
그냥 머릿속으로 때려맞추는 게 더 빠를 때도, 가끔은 있을 겁니다.
근데, '시각화된 틀'을 사용한다면, 한없이 안 보이는 현상은 거의 막을 수 있지 않을까요?
실제로 저는 6모 양자수 문제에서 한없이 안 보이는 현상을 겪었습니다.
그때는 이 스킬을 만들지 않았을 때였으니까요.
하지만, 수능에서는 한 번도 막히지 않고, 바로 해결할 수 있었습니다.
제 수능 화1 1등급은 이 스킬이 아니었다면, 불가능했을지 모른다고 해도 과언이 아닐 겁니다.
화1을 시작하시려는 분들,
이 스킬, 잘만 단련시킨다면, 적어도 후회는 절대 안 하실 거라고 장담할 수 있습니다.
다음 칼럼은
'나는 어떻게 이러한 스킬을 체화하였는가'로 찾아뵙겠습니다.
감사합니다.
0 XDK (+1,000)
-
1,000
-
표본은 충분합니다 6칸에서 5칸으로 내려가고 계속 순위가 밀려나서 너무 불안해요 ..
-
원래 이거 칠때 키보드 보고 집중해야 하나요
-
전자 vs 컴공 1
뭐가 더 좋나요
-
원인있음의사난수 원인없음진성난수 제1원인원인없음 연결하면 제1원인진성난수...
-
시대 로스쿨 생긴겨? ㄷㄷ
-
상위 20퍼 ㄷㄱㅈ
-
이번 수능 언미물1생1 으로 백분위 92 93 2 83 87 떴습니다. 시대인재에서...
-
네
-
독재 vs 재종 2
기준: 자제력 0, 현역 수능 화작:6/미적:5/영어:5/생1:4/지1:7
-
ㅇ
-
이거 주작아님? 5
https://youtube.com/shorts/IfAOiPNK6hY?si=D0r34...
-
잘생긴 개념+현돌 기시감 할건데 1)하루종익이라는 주간지가 있는데 풀어야 하나요?...
-
얼?버기 2
눈 어제 4시반에 잠 근데 무슨 사고가 일어난거?
-
맞는 것 같긴 해요 221129 이런 문제 보면
-
제주대학교 수의예과 25학번 새내기를 찾습니다! 안녕하세요, 25학번 신입생...
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
사탐런 했는데 사문이 잘 안맞아서 다른과목 할까 생각중인데 다른건 몰라도 이...
-
설대 기준 나름 핵빵 예상학과 1. 기준 - 소수과 에너지자원 공학과 - 4명...
-
강의하다 감옥 간 강사의 책과 이제는 안 나온다고 들은 기출해설집
-
관련 링크 1. [속보] 전남소방본부 "현재까지 2명 구조·47명 사망‥132명...
-
[속보]제주항공 여객기 추락, 사망자 현재 47명...더 늘어날 듯 5
전남 무안공항으로 착륙 중이던 여객기가 추락·폭발하는 사고가 발생한 가운데 해당...
-
[속보] 국방부, 무안 여객기 사고에 "특전사 등 180여명 투입 준비" 0
국방부 29일 출입기자단 공지.
-
속보 대해린사망 4
잠와서 죽음
-
1년 존나 열심히 해서 올해 끝낸다 삼수는없다
-
실제 사회에서 차이 엄청난가요??
-
오징어 게임에서 부활 ㄷㄷ
-
안뇽 5
히히
-
사람 바글바글하려나? 알바가 12시에 끝나서 찜질방가서 밤새는데
-
얼으으으으응으ㅡㅇ으ㅡ으음
-
한 해를 마무리하는 노래와 내년을 시작하는 노래를 슬슬 정해볼까 해요
-
둘 다 가군입니다 상경계에서 일 하는게 목표라 가정했을때 전자는 이중전공이라는...
-
사문 생윤하고 사문은 윤성훈 개념+기출 모고 하면 될 것 같은데 윤리는 뭐가...
-
엄마가 나옴. . . 안 그랬으면 좋았을텐데. . ㅇ 그래서 난 시름
-
성대 복수전공 4
성대 사범대에서 비사범대로의 전과 혹은 복수전공 가능한가요?? 많이 어렵나요? 성균
-
(노베 기준) 생명2등급 VS 지구2등급 어떤 게 수월할까요.. 1
직장인 최저 맞춰야하는 상황에 사탐1(생윤) + 과탐1(생명 혹은 지구)응시...
-
이름이 너무 못생겼어 ‘강’자가 ㅈㄴ띨빵한듯
-
귀여워서 더 킹받네 ㅋㅋ
-
서강대 기계공인데 전전 복전하기엔 너무 힘들까요? 이런경우들 있는지..
-
토익 인강 추천 3
토익 공부 처음 하는데, 인강은 그냥 해커스 1타꺼 들으면 되나요?
-
중앙대랑 경희, 외국어, 시립이 간판차이가 그렇게 많이 남? 5
중앙대 전과 쉽다길래 문사철이나 사범대 가서 상경이나 도계부로 전과하고싶은데...
-
[속보] 경찰 "무안공항 사고에 무안 갑호비상, 인근지역엔 을호비상" 0
비상근무 발령…최고단계 갑호엔 연가 중지·가용인력 100% 동원 경찰청이 29일...
-
인생 다 운빨임 세상 모든게 운빨임 수학 과학 법칙도 운빨일수도 있음
-
[속보] 전남소방본부 "현재까지 2명 구조·47명 사망‥132명 수색 중" 2
전남소방본부 "현재까지 2명 구조·47명 사망‥132명 수색 중" ▶MBC뉴스를...
-
작년에 지거국 붙었는데 안 가고 10개월 내내 기숙학원 들어가 있었던 앤데 이번에...
-
기출만 들어보려고 하는데 미적을 들을생각이거든요 수2는 어떤가요???
지나가겠습니다
전자 수 분수조건 같은 경우도 이 틀을 이용하면 쉽게 풀 수 있습니다.
직접적으로 도움은 안 되지만, '일정한 틀'이 있다는 것만으로 훨씬 더 안정적이고 효율적인 풀이가 가능할 겁니다.
만약
합성함수 N축인줄 알았으면 7ㅐ추 ㅋㅋ
그래도 감사합니다
오랜만에 보네여
그냥 화1 이렇게까지 몸비틀면서 할시간에
생지하고 대학가는게 맞는듯 합니다 ㅋㅋ
지구를 내신으로 안 했어서...ㅋㅋ
이런거볼때마다 화학 재밌어보임
어렵긴한데 ㅋㅋㅋㅋㅋ 하면안되겠지
하면 꿀이에요
화학 유기중인데 다시 시작할때 참고할게여
수능 화학은 대체 어떤 과목일까요…
GOAT
오비탈에 n축...? 파급효과 미쳤다
오비탈에서 막혔었으면 화1 계속 했을텐데..
시각화 좋네요 땡큐
ㄷㄷ 귀하신 분이 누추한 곳에...
와 필수이론에서 괜히 그래프 여러번 그려보라한게 아니구나..
ㅋㅋ..
안녕하세요 이거 보고 내년 지학으로 바꿨습니다
지나가던 물지러입니다. 계속 지나갈게요~
작년에 뜨길 잘했지 이게 뭔 고생이냐~
화1은 할게 못됨.. 타임어택 진짜 벽 느낌
저런 문제를 왜 만드는걸까,,,
화1 문제보고 투투하기로 했다
어우,,, 진짜 이런문제를 왜만들까,,,
이거보고 지학하기로 결심했습니다..
물지입니다
대가리박고 지나가겠습니다
늦게나마 봤는데 글 감사합니다 연습해볼게요