삼.도.극. 마스터 2.직관적 해석(1) 프린트 첨부! (5/11(목) 저녁 7시)
[ver.2024] 돌아가지 말고 직진으로 - No.2 삼각함수 - 도형의 극한(1) - 숙제.pdf
삼.도.극. 마스터 2.직관적 해석(1) 프린트 첨부! (5/11(목) 저녁 7시)
안녕하세요! ‘돌아가지 말고 직진으로’ 조병훈입니다!
5월 11일에 함께할 삼각함수 도형의 극한 직관에 대한 기본을 잡을 수 있는 문제들을 준비했습니다!
한 번 쯤은 들어봤을 삼.도.극 직관!
15년 이상 직관을 연구하고 체계화 시킨 저에게 가장 무서운 부분은
잘못 사용하여 틀리는 경우입니다.
많은 시행착오 아래에서 어떻게 실수할 수 있고,
어떤 부분을 주의해야 하고,
어떻게 바라볼 때 직관이 효율적으로 적용될 수 있는지
그 기본자세를 명확하게 해주는 수업입니다.
수업을 듣는 친구들은 먼저 풀어보고 오시길 권합니다!
스스로가 생각하는 직관적인 풀이를 시도해보세요.
반드시 교과과정으로 한 번 더 다져보세요!
꼭 수업을 함께 하지 않더라도 기본기를 잡는데 도움이 되는 구성이니 풀어보시길 바랍니다^^
직관수업을 듣고 나면, 우리가 직관을 새로운 도구로서 가져야하는 이유를 아주 쉽게 공감할 수 있습니다. 생각보다 많은 경우에서 우리는 직관을 통해 쉽게 접근할 수 있고, 단순화시킬 수 있습니다.
그 기본이 되는 가장 중요한 도구들을 5월 11일(목) 저녁 7시에 함께하게 됩니다!
5월 7일(목) 저녁 7시!! 저와 함께 하시죠!!!~
https://academy.orbi.kr/intro/teacher/396/l
(4회를 한 번에 신청하시면 3회 수강료만 받아요~)
디오르비 02-522-0207
TMI
(사실 4회 신청에 3회 수강료를 구상한 이유는 직관만큼 교과과정도 중요한데, 직관수업만을 듣는 학생들에게 이 수업도 도움이 많이 된다는 것을 보여주기 위함이랍니다^^)
저는 15년 째 이 삼각함수 도형의 극한에 대한 직관적 해석을 독자적으로 연구하고, 강의해왔습니다.
누구보다도 완벽한 논리를 구축하고, 그것을 체계화시켜서 정리해왔습니다.
최고의 분석을 보여드릴게요!
수업에 함께할 문제들은 수업 전에 PDF로 공개합니다.
미리 풀어보시고 오세요! 제대로 푸는 것이 어떤 것인지 보여드릴게요!!
최적의 풀이를 함께 합시다. 그것을 기반으로 시간관리도 하고 점수도 올려보자구요~
1. 삼도극 마스터(1) - 교과과정 마스터 (5월 5일(금) 오후 2시)
2. 삼도극 마스터(2) - 직관적 해석(1) : 기본 도구 챙기기 (5월 11일(목) 저녁 7시)
3. 삼도극 마스터(3) - 직관적 해석(2) : 여러가지 상황에서의 직관 (5월 18일(목) 저녁 7시)
4. 삼도극 마스터(4) - 다양한 문제에 적용하기, 특수한 상황들에 대한 해석 (5월 25일(목) 저녁 7시)
https://academy.orbi.kr/intro/teacher/396/l
(4회를 한 번에 신청하시면 3회 수강료만 받아요~)
디오르비 02-522-0207
<강의 소개>
1. 삼도극 마스터(1) - 교과과정 마스터 (5월 5일(금) 오후 2시)
교과과정을 통해서 문제를 풀 때에도 효율적인 방법이 있습니다.
문제들이 극한값을 구하는 문제이기 때문에, 답을 구하는 과정도 함께 호흡을 맞출 필요가 있습니다.
시간 제한이 있는 수능에서 시간을 효율적으로 사용할 수 있는 방법을 알려드립니다.
2. 삼도극 마스터(2) - 직관적 해석(1) : 기본 도구 챙기기 (5월 11일(목) 저녁 7시)
교과과정에서의 효율성을 넘어서는 방법을 가르쳐드립니다.
직관적 해석에 있어서 기본적으로 사용되는 언어들을 장착시켜 드립니다.
어려운 대학과정의 논리가 아닌, 직관적 논리를 기반으로 머리에 쏙쏙 들어오게 해드립니다.
3. 삼도극 마스터(3) - 직관적 해석(2) : 여러가지 상황에서의 직관 (5월 18일(목) 저녁 7시)
다양한 상황에서의 대처방법을 함께 합니다.
대학과정도 한스푼(10분) 넣습니다. 그것을 기반으로 좀 더 구체화해서 들어갑니다.
4. 삼도극 마스터(4) - 연습문제 (5월 25일(목) 저녁 7시)
아는 것과 적용하는 것은 다릅니다.
6월 평가원 직전에 논리를 확실하게 다지고, 체화시키도록 도와드릴게요!
TMI : 직관이 먼저일까요? 아니면 교과과정이 먼저일까요??
제 입장에서 말씀을 드리면, 둘 다 합시다! 입니다.
1. 직관적 해석을 공부하고 나면, 굉장히 빠르게 풀리는 문제들을 많이 경험하게 됩니다.
교과과정으로는 너무 복잡해보이더라도, 직관적으로는 한 큐에 해결할 수 있는 문제들이 많죠. 단지, 공부한 대로만 적용하더라도 쉬워지는 문제들이 많습니다.
또한 교과과정으로 풀이가 안보이는 문제가 직관으로 풀리게 되는 경우들도 많이 있습니다.
2. 하지만, 모든 문제들이 직관적으로 바로바로 해결되지는 않습니다.
또한, 결과적으로 직관으로 풀 수 있다고 하더라도, 실제로 보이지 않는 경우들도 종종 발생합니다. 그래서 보완적인 차원에서 교과과정이 필요합니다. 두 가지 도구를 다 가지고 있는 것이죠.
시간이 제한적인 수능에서는 보이는 대로 푸는 것이 정답입니다.
직관이든 교과과정이든 연습은 평소에 미리 해놓는 것이죠.
평소에 공부를 할 때에는
직관을 사용해서 먼저 도전한다.
2. 직관으로 못 푼 문제 뿐만 아니라, 직관으로 푼 문제도 반드시 교과과정으로 다시 풀어본다.
가 맞습니다.
교과과정이라고 무조건 돌아가지 않습니다.
교과과정도 연산을 염두해서 접근 한다면, 충분히 좋은 방법입니다.
우리는 100분을 관리해야하기에 조금이라도 더 시간을 확보하기 위해, 점수를 높기기 위해 두 가지 방법 모두를 내 것으로 만듭시다!
앞으로도 이런 테마별 특강을 계속 진행하려고 합니다.
여러분이 수능수학의 점수를 위해서 필요한 부분은 무엇인가요?
댓글이나 쪽지 부탁드려요! 제가 해결해드리겠습니다!!
제가 대신 더 많이 반복해서 파해치고, 최적의 풀이를 연구해서 테마특강으로 만날게요!
함께 만들어가요~ 대한민국 최고의 강의를요!!
조병훈 소개
서울대, 연세대 의예과 포함 다수의 의대생 및 SKY대생 배출!
2023학년도 수능 <공통, 미적분> 대한민국 최초 해설강의
경기도 수학경시대회 금상
카이스트 졸업
현) 디오르비
현) 강남구청 인터넷 수능방송 (자이스토리 미적분, 고쟁이 수학2 완강)
현) 강남하이퍼 본원, 목동관
현) 대학나무학원 반포
<수업목표>
오직 수능점수의 향상만을 생각하며 수업합니다.
수능수학에 최적화된 새로운 실전적 개념을 수업합니다.
기출의 트랜드, 빈도에 기반해 중요도를 판별하여 더 중요한 유형을 더 많이 함께합니다.
다양한 풀이에 대한 정확한 명분 및 우선순위를 수업합니다.
수능수학 고난도 주요유형을 하나의 단원으로 인지하여 세분화하고, 그 안에서 개념을 잡아갑니다.
수능에 꼭 필요한 개념을 실전에서 떠오를 수 있도록 문장으로 제시합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
RNP->브크 브크->RNP 어떤순으로 듣는게 좋을까여??
-
07 << 왜케 귀여움 29
그냥 사랑스럽네..
-
교권 높아지게 교사에게 무언갈 쥐어주면 안된다고 생각함 7
가족중에 교사 체벌로 고막 찢어지고 수술까지 받은 사람이 있어서 우리 가족은 체벌에...
-
SKY 문과 재학중입니다. 22수능당시 13111 이었고, 확통쌍윤 응시했습니다....
-
......? 작년에도 파트당 4권인걸로 기억하는데
-
조금 더 주체적인 삶의 방향을 정하고싶네
-
왜 벌써 추합인데
-
짠하면서도 한편으로는내미래일거같아 걱정됨
-
현재 내신은 3점 중반쯤 되구요, 내신이 많이 높은편이 아니라서 수능 최저도 같이...
-
혹시 있을까요? 경찰대 면접 특강만 3일 안에 다 듣고 끝낼려하는데….. 천사 구해요 ㅠ
-
대신... 좀... 높으신 분들을 많이 뵈서 좀 긴장했다는 ㅋㅋㅋ
-
걍 버틸까
-
드가자
-
등수 유지 ㅅㅅㅅㅅ 22
제발 더 떨어지지만 말아라 여기 19명 뽑는다고....
-
맞팔하실분 11
뉴비 은테달고싶어요 잡담태그 꾸준히 답니다
-
탐구 변표 총합이 아니라 두 과목 평균으로 계산하는거였나요? 이렇게되면 탐구를 매우...
-
응애 롤체 뉴비 14
템도 리롤도 너무 안 풀려서 식은땀 흘리다가 개같이 똥꼬쇼 하고 결국 1등 쟁취햇어요
-
예체능에 국어 3등급에 탐구 1~2나옴 고2땐 국어 거의 2였다가 고3꺼 치면 3...
-
9살때 수학학원에서 저희 반이 유독 집중력 떨어지고 못하던 날이 있었는데 그 날에...
-
김동욱 정병호 박선 백호 이게 커뮤픽이 아니면 뭐임
-
동덕에서 반수 8
2학년까지 다니다가 뭔가 과도 마음에 안 들고 해서 반수했는데 현역 때랑 비슷하게...
-
+) 마ㅡ감 (감사합니닷)저도 나름대로 찾아봤는데 꽤 복잡하더라구요......
-
777 6
ㅎㅎ
-
늦둥이 막내라서 첫째 오빠랑 나이차이가 꽤 나는 편 오빠는 체벌 마지막 세대에...
-
계속 확률이 떨어지네.... 높공은 포기해야하나... 슬프군
-
이번 수능 미적 72점(노찍맞)인데 1년더하면 1컷이상 받을수 있을까요? 9
제곧내..1년동안 수학 빡시게 할 생각입니다..!
-
초반에 3칸인것들이 4칸되다가 6칸됨
-
ㅅㅅ
-
존재하긴 하죠..?
-
하루 순공이 10시간이 넘었던 선배님들께 질문)) 쉬는 날을 설정하셨나요?? 36
분명 의견이 갈리는 지점이라서ㅠ 수면이 부족하지 않다는 가정하에 주 1회정도 쉬는...
-
수능 딸깍하면 졸업만 해도 월천 보장되는데 인생 날로먹기 딱 좋은데 이해가 안되네
-
부모님께서 3수를 반대하시는데 어디서부터 어떻게 설득시켜야 할지 모르겠어요ㅠㅠ...
-
학종 붙으신분 내신이랑 생기부 어느정도셨는지 궁금합니다
-
실채점서 표점이 생각보다 떨어지면 백분위도 하락하나요?ㅜㅜ
-
편입 질문 0
1-1 성적 다 망하고 1-2 휴학했습니다 다 재수강해서 복구시키면 편입가능성...
-
의대 정원 늘어나서 더 들어가기 쉬워진듯 내년도 5000명 뽑으면 개쉬울거같음 올해...
-
군필 사수생 살려
-
(여론조작중)
-
가면 페이커 만날수있다매
-
노베 정시러 인데 대성-임정환 생윤사문 메가-김종익 생윤 윤성훈 사문 어떻게 풀커리 탈까요
-
DNS 스푸핑 지문도 어김없이 썰리고 나니 현타오네요 느는 과목 맞나…
-
사진 관련 질문 1
이사진에서 쉬운 표본을 선호합니까? 이게 뭔 의미인가요
-
대학별 인문논술 Review...
-
감사합니다
-
왜들어옴
-
예비 고3 언매 0
언매 인강들으려고 하는데 김동욱T가 나을까요 전형태T가 나을까요 고1 문법은...
-
문제가 있을지도 모르겠지만 일단 한번 해보고 결정해도 되지 않을까? 증원하지...
-
서성한 수학과 0
학종으로 붙고 싶다....