칼럼) 적분 총정리 for 24 수능 대비
적분 총정리 수학 2 -.pdf
적분 총정리 미적분-.pdf
UR독존 님의 2022학년도 수능 성적표
구분 | 표점 | 백 | 등 |
---|---|---|---|
한국사 | - | - | 1 |
언어와매체 | 144 | 100 | 1 |
미적분 | 147 | 100 | 1 |
영어 | - | - | 1 |
물리1 | 72 | 100 | 1 |
화학1 | 59 | 78 | 3 |
한문 | - | - | 4 |
군 | 대학 | 학과 | 점수 | 순위 |
---|---|---|---|---|
가군 | 고려대 | 의과대학 | 714.562 | 1 |
나군 | 경희대 | 의예과 | 611.520 | 2 |
다군 | 순천향대 | 의예과 | 1,005.102 | 3 |
수학 2, 미적분 버젼 나누어놨고,
단언컨대 이에 포함되지 않는 유형은 없을 겁니다.
질문은 게시물 댓글로 해주시면 성심껏 답변 드리겠습니다 :)
0 XDK (+21,000)
-
20,000
-
1,000
-
네
-
한 5년 잇네
-
반박하기 애매해서 슬펐음
-
남의 인생한탄글에 자기 경험이나 생각 적는 수준을 벗어나서 “고민되는 순간...
-
떨어지면 걍 죽지 뭐
-
큐브 2
요즘 재미들려서 열심히 하는데 별점 테러 당하고 급 기분 나빠짐 풀고있었는데 먼저...
-
노래방 마렵다 1
같이 갈 친구가 없네 아..
-
50만원짜리 MRI는 과잉진료라고 정형외과 ㅈㄴ 까대면서 80만원짜리 '척추 강화...
-
깨달음을 2
못 얻엇다
-
요즘 뭔가 분위기가 어수선해서 골고루 못하네요
-
제발보내달란거임
-
25수능 언매 확통 정법 사문 22333 나왔습니다. 20, 21, 27, 28...
-
심심함..
-
Mbti좀 적고 가주셈 14
그냥 궁금함
-
저기서 살짝 해피로 가면 정신병자가 죽으려했다가 혼수상태일때 영혼이 잠시...
-
전 1300박았습니다 다들제발 tsll박으세요 ㅈㅂㅈㅂㅈㅂ
-
님들 다 기만임 1
생존햇잖음
-
조건없이 그냥그런경험을해보고싶어 오래된생각이야
-
이제 LLM도 3
중국한테 따이네 한국은 애초에 답 없었고 미국이랑 중국 양강구도인데 미국 발등에 불...
-
하하하 이제 평화롭군
-
일로 오렴
-
5만원만 해보라는 옵붕이의 말에 홀라당 넘어감
-
디시펌
-
천재적인 경우 많이 봤음
-
모르면 외워 0
흐흐
-
ㅈㄱㄴ
-
태권도, 검도, 축구, 야구, 바둑, 그림 꽤 진지하게 했었는데 이 중에 하나라도...
-
의한대전 5
증원빔이후로오랜만에보는것같네
-
근데 생각이안남
-
착한 오르비언들입니다
-
술을마셨어요 0
이렇게많이머신게처음인데기분이좋아서짜증나
-
여기저기 아픈데 많은데 어디 진짜 크게 골절됏거나 하면 정형외과 담 걸렷는데...
-
소설 하나 써봄 5
옛날에 호랑이가 잇엇다 호랑이는 컸다 그래서 무서웠다
-
아니 친구야 6
내가 개별주 레버리지는 하지 말라고 했잖아...
-
정신병자가연상이어야함 정상인은 연하인데 정병인이 평소엔 티 하나도 안내고 밝아보여서...
-
친구가 있다는사람들은 11
뭐 그냥 ㄱㅁ하고싶은거죠?? 그쵸??
-
평소에 안보이던 의뱃한뱃햄들 출몰함 약간 악령소환술 느낌 여긴 키워드 알림도 없는데 진짜 어케했노
-
수험생활 4
낭만잇고 재밋음. 조은 추억이 될 거 가틈
-
으응
-
기출잘외우는방법 6
모두 현장에서 풀어본다
-
먼가 많이 실망햇다 해야하나 처음엔 눈물콧물 질질짜면서 봣는데 이번엔 감동이 없엇어
-
수시러의 인생도 함 살아보고 시픔 근데 짜피 잘 못할 듯 ㅋ
-
ㆍ
-
ㅈㄱㄴ
-
일단 수도권 ㅈ반고에 다니고 있고 2학년 2학기까지의 성적 기준으로는 전교...
-
다들 잘자요 8
ㅂ.ㅂ
-
영타도 ㅇㅇ
-
설마 이시간까지 안자고 오르비하는사람 업겟지?
-
친구가 물어봤는데1.5가 6가 왜 저렇게 되는건지 아는사람2. CaCO3가 왜...
야호!
맛있게 드세용 :)
ㄱㅂㅈㄱ~
와 진짜 화학.. 악랄하다 ㄹㅇ
잘 먹겠습니다❤️
독존님 국어 질문이지만
글읽는중에는 이미지나 영상화시켜서 받아들이고
거시적•미시적 생각들(독존님칼럼..)을 해주면서 읽어나가는 방식에대해 어떻게 생각하시나요?
어직 체화가 안되긴 했지만...
혹시 말씀해주신 거시적 미시적 생각이 글을 읽으면서 하시는 걸 말하시는 건가요 아니면 읽을 때는 영상화를 하고 사후적일 때는 거시미시를 하신다는 건가요??
읽는 중에는 이미지 영상화를 해주고
사후적 생각을 해주는 거에요
미시적 생각으로는 (cogitoergosum님 칼럼 참고해서)대비되는짝 나만의말로이해하기등 으로 받아들이고
거시적으로는 독존님 칼럼처럼 도입부보고 작전세우기등을 해주는거이요
이런것들을 자연스럽게하는게 어렵긴하지만 체계에대한 독존님의 생각이 궁금합니다!
사실 미시거시적 접근을 통해 영상화를 해내는 게 체계적으로 맞습니다. 저런 것들 없이도 영상화가 되면 할 필요가 없으나 대부분의 지문에서는 미시거시적 접근을 하면 저절로 영상화가 되므로 공부의 수단으로써 미시거시적 분석을 해주시는 것이 맞다고 생각합니다!
아... 답변 감사합니다
이미지화에만 신경쓰느라 생각들을 놓칠때가 많았는데
1생각 2이미지화 이군요!
제 칼럼에도 거시적인 부분이 나와 있습니다
예를 들어 저는 구성에 대해 설명할 때 "요소 1, 요소 2를 제시한 후에 언제나 개별적으로 1번은 ~~~~ 2번은 ~~~~ 과 같이 나누어서 나오게 된다"라고 설명하는데, 이걸 독존님 식으로 풀이하면 떡밥 제시 - 복선 회수의 느낌인 거죠
페이스 메이커 복귀
삼극사기 첨엔 이게 뭐노.. 했다가 요즘 넘 잘쓰고 있어요! 6모도 삼도극 삼극사기로 뿌수쟈..
혹시 3번 관련내용은 평가원 수2 기출에 나온적이 있었나요?? 그나마 생각나는게 사차함수 넓이 변화보는 문젠데 그것도 요거랑 다른듯해서..
230620이요!!
아 그문제 넓이변화로 볼 생각 자체를 못했네요..!
수2만 봤는데 쌌다
7ㅐ추
와.. 존경스럽네요
그와중에 화학이..
화학 선택했는데 좀 쫄리네요
레전드 등장
미분 칼럼은 작성 생각 없으신가요 ㅠㅠ
저렇게 유형 정리가 안 되어서 완성이 안 되네요.. ㅜㅠ
...
이 교재 이름이 뭔가요?
제가 칼럼으로 쓴 거라 이름 없습니다…!
선생님 칼럼 맛있게 잘 읽었습니다. 수2 8페이지에 이차함수 넓이문제ㅡ말인데요. S1과 s3의 넓이의 합과 s2의 넓이의 합이 같아지는 점에서 극소가 되는 것 아닌가요? S2의 넓이가 s1과 s3의 넓이의 합이되는 곳은 b-a=a+(2-b)인 점과 다르지 않나요?ㅠ 시간 괜찮으실 때 답변 한번만 해주시면 정말정말 감사드리겠습니다!!
그림이 조금 밀렸네요. 넓이의 극소를 보기 위해 넓이를 미분한 길이가 0이 되는 곳을 찾아야 해요 그래서 증가의 길이와 감소의 길이가 같은 곳을 찾은 겁니다!
아!! 이해했습니다! 정말 감사합니다
적분 총정리 수학2 ex8번 문제에 대해서 질문이 있습니다..!
x축에 평행한 직선과 이루는 넓이의 변화율을 다룰 때와는 다르게, 기울기가 변수로 주어진 상황에서 넓이의 변화율은 단순히 길이 변화로 볼 수는 없을 것 같습니다. 관련해서 일반화된 식을 세워보았는데 확인해주시면 감사하겠습니다 ㅠㅠ
제가 증명한 방법대로 풀면 이렇게 될 것 같습니다