[이동훈t] 증명과정이 풀이에 활용되는 경우 (+160629B형) 미적분
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
교과서의 증명과정이
기출 문제 풀이에
적용되는 예를
들어보겠습니다.
( 2024 이동훈 기출 확통, 기하 편이
모두 출시되면 ...
다른 곳에서 읽기 힘든 심도 깊은
글들이 좀 더 많아질 것으로 생각합니다.
오늘은 좀 가볍게 ... )
아래는 코사인 법칙의
증명 과정입니다.
(2024 이동훈 기출 미적분 평가원 편 수록)
푸른 색 삼각형 ACH의 경우
세 내각이 모두 theta의 함수 이거나 상수 입니다.
그리고 삼각비를 이용하면
세 변의 길이를 모두 theta의 함수로
표현할 수 있습니다.
그런데 삼각형 ABH의 세 내각 중에서
각 A, B는 theta의 함수로 표현이 불가능합니다.
이때, ABH는 직각삼각형이므로
피타고라스의 정리를 이용하면
빗변 AC의 길이를 theta의 함수로 표현할 수 있습니다.
여기까지가
코사인법칙 증명 과정입니다.
아래 문제는 이를 활용한
함수의 극한 예제입니다.
풀이 과정에서
코사인법칙이 활용되었음을
알 수 있습니다.
이제 한 단계 레벨 업 해볼까요 ?
위의 두 문제는
2024 이동훈 기출 미적분 평가원 편의
예제입니다.
해설은 책을 참고하시고요.
한 단계 레벨 업을 해보면요 ...
위의 문제는 이 주제에서
어려운 편에 속하는
평가원 기출입니다.
구체적인 풀이는 생략하고
접근 과정만 설명하면 ...
(1) 두 원이 보이므로 ... 두 원의 중심을 연결한다.
(2) 원과 접선이 보이므로 수선의 발을 내린다.
(3) 이제 세 내각이 theta의 함수로 결정할 수 없는 삼각형이 보인다.
(4) 이 삼각형에서 피타고라스의 정리를 적용한다.
(5) 삼각함수의 극한으로 계산을 마무리 한다.
.
.
.
수능 문제를 분석한다는 것은
위의 과정의 역순일 것입니다.
기출문제
-> 유사 기출 찾기
-> 교과서 예제, 연습문제에서
-> 교과서 본문에서 개념 찾기
(그리고 교과서에 없는 실전이론 찾기)
이 과정을 다시 역순으로 학습하면
기출 분석이 완성됩니다.
이렇게 공부하면 무서울 것이 있을까요 ?
.
.
.
오늘도 화이팅 하세요 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
블부이 기상 4
공강 개꿀
-
좀 전에 내년 선발인원이 떴는데 올해 대거 미지정사태에도 꼴랑 50명 줄여놓고...
-
창팝 추천좀 0
이해가쏙쏙되잖아리슝좍이랑 리미제라블시리즈랑 쌀숭이 바리정같은 초 네임드는 봤음
-
나갔다와야지 6
흐흐
-
사실 로스쿨을 ‘안’ 가는 것보다 ‘못’ 가는 거에 가까워보이긴 하는데…
-
과탐 하나 노쇼하는 꿈 꿨네 하
-
나도 슬쩍
-
제가 살면서 주변을보면 자기가 하고싶었던거 있었는데 꿈을 접고 성적에맞춰...
-
아니 이나경 6
어떻게 마스크 크기가 저렇게 남냐???
-
메가만 100 뜨고 고속, ebs, 이투스는 99로 보는데 100 안될까요? 근데...
-
올해 진짜 공통 역겹게 나왔었는데 25공통 반영해서 좀 쉽게 내려나 아니면...
-
국어와 수학은 "강"평 ㅋㅋ
-
안녕하세요 단국대 치의학과 4학년 학생입니다. 혹시 충청 또는 천안에 사시는 분...
-
번호별문제 다 이렇게 갖다박으면 ㅇㅇ 물론 이문제들 싹다 처음 보는거라고 가정하고 ㅇ
-
덕코 9
다 털었다 이제슬슬장례식을
-
내신은 3.6 모고는 44344인데 우리학교가 수시로만 학교를 보내서 정시를 그다지...
-
고3 부터 왜케 살쪘냐는 소리 많이 듣네
-
정시 기균 라인 좀 잡아주시명 감사하겠습니다 ㅜ
-
3번에 D국이 국민들 입장 물어보는거 반대친 사람 있을까요?
-
마음을 어떻게 추스려야 할지...
-
둘 다 붙으면 어디감? 대학 자체 네임벨류랑 졸업 후까지 종합적으로 봤을 때 어디가...
-
14 고사장 (컨버전스홀)
-
사람 왤케 많냐 1
음
-
떴으니까 올리지ㅋㅋㅋㅋ
-
손샘은 비문학이 강한데 문학이 어렵다하니 문학도 해야겠고 문학이 더 시간...
-
댓이나 쪽지 남겨주시먄 감사하겠습니다...
-
후무많어중. 후많중 후중 후ㆍ듕
-
1차는 붙었는데 최저를 못 맞춘 대학이 있습니다. 아직 면접 준비가 하나도 안 되어...
-
도란 귀엽네 12
ㅇㅇ
-
기억이 너무 명백한데 후자임? 2번 3번 이슈인데 마침 2 랑 3은 헷갈리기 좋은 숫자긴하긴함
-
가정했던 최악의 상황이 '대부분' 펼쳐진다는 것임
-
24수능 14 25수능 14,15 번 정도의 문제 나형이면?
-
그냥 평소에 오르비 눈팅이랑 가끔 댓글만 달았는데, 칸타타님이 근거 없이 “내가...
-
둘이 맞팔도 했네ㄷㄷ 15
사귀는 거 맞다니까
-
소름돋아
-
꿀팁좀요..
-
97뜨면 진짜 사고인데.....
-
엣큥~ 그건 기여운 와타시였네! 밥 먹기 전에 심심했음 ㅈㅅ
-
애증의 관계임. 연애한지 좀 된 장기 커플인데 이제 볼 장 안 볼 장 다 봐서...
-
6일에 받으려면 가야되는거?..
-
물리 6 9 수능 50 50 48에 과외경력+학원경력 있음 수능과외 하면 얼마 받을 수 있음??
-
무슨 맛을 마실까요 블랙 제외
-
제가 심판봐드림
-
수학 모르겠어잉 6
(fㅇf)(1)이면 f(f(1))이니까 그냥 f(1) 구하면 a/4 아닌가? 왜...
-
둘다 채점했는디 ebs 백분위가 더 맛있드라구여.. 여러분들도 메가보다 ebs가 더...
-
가군 부산대학교 경영학과 나군 부산대학교 경제학과 이런식으로 지원 가능한가요?
-
헤헤ㅔㅎ헤흐흐ㅡ헤헤ㅔ흐
첫번째 댓글의 주인공이 되어보세요.