[박재우] 9평에 대한 분석과 저의 생각
안녕하세요
오랜만입니다.
어제 시험 분석을 하고 촬영을 하느라 글을 올리지 못하고
오늘 공강 시간이 되어서야 글을 올립니다.
우선 시험치느라 고생들 많이 했습니다.
언제나 얘기하는 것이지만 난이도라는 것은 개개마다 다르기에 언급하지 않겠습니다.
평균적인 난이도에 대한 부분은 여러 회사들이 분석해서 낼 것 이니까
그것이 훨씬 공신력이 있을거라 생각합니다.
오늘 아이들 질문을 받고 생각한 부분을 한 번 써 보고자 합니다.
언제나 생각해야 하는 방향은 어떻게 하면 문제를 빨리 풀고
실수하지 않고 잘 마무리 하느냐라고 생각합니다.
긴 시간을 갖고 문제를 정확하고 논리적으로 잘 푸는 것도 중요하지만
시간이라는 제약조건 내에 다시 한 번 검토할 수 있는 시간을 확보하고
좋은 점수를 얻기 위하여 전략을 어떻게 해야 효과적일까에 더 중점을 둬야 한다고
생각합니다.
이제 문제를 풀 때 어떤 부분에서 힌트를 얻고 힌트로 말미암아 중간 과정을 얼마나 많이 줄일 수 있을건지
이번 9평 주요문제들을 보면서 약간의 도움 말씀을 드리고자 합니다.
더 좋은 방법은 얼마든지 있으므로 제 말이 진리인 것은 아니라고 말씀을 미리 드립니다.
11번 - 근의 개수가 나오는 문제는 그래프 개형이라는 것과 이차함수는 항상 대칭성을 가지고 있다라는 것이
포인트겠죠. 최근 나왔던 주제이기도 하구요. 보자마자 짝수차 실근의 곱이 -9 라는 것에서
그래프상으로 +- 3인 것을 바로 얻고 f(n)=8 이되는 한 근이 3이므로 나머지 하나는 대칭성에 따라 1이 된다
끝이겠죠
13번 - 길이와 각이 주어진 문제기 니오면 일단 주어진 위치를 먼저 파악하는 것이 중요합니다.
그리고 원에 내접하는 삼각형이 있으면 바로 사인 정리를 떠올리고 반지름 구하기를 떠올리면 됩니다
일단 점 C에서 선분 ED에 수선의 발 H를 내리면 위치가 주어진 길이와 각에 의해 선분 CD는 바로 해결됩니다.
각 D는 자동해결 그리고 반지름은 OD를 생각하고 OE를 a라 두고 삼각형 OED에서 코사인 법칙을
쓰면 해결됩니다. 별로 시간이 소요되진 않습니다.
일단 각과 선분 길이가 있는 곳의 위치를 팡가하면 거기서 문제를 풀어 나갈 수 있게 될 겁니다.
14번 - 최근에 면적과 원함수의 차에 대한 해석이 좀 보이고 있습니다. 이 번 육사 문제에서도 속도에서
움직인 거리와 위치 변화량에 차에 대한 문제가 나왔죠. 명칭만 다를 뿐 기본적으로 같은 개념 입니다.
당연 절댓값이 들어가 있으므로 부호에 대한 해석이 전체 해석의 대부분이 됩니다.
두 함수의 값이 같아진다는 것이 무엇을 의미하는 지 꼭 기억하시길 바라구요
ㄱ,ㄴ,ㄷ, 합답형 문제는 우선 질문 내용을 스캔하고 들어가시면 좀 좋아지는 데 모든 질문에
이면이라는 조건이 들어가 있으므로 각 케이스에 대해 해석하면 될 것입니다.
합답형은 사고가 서로 연관이 되어 있다는 것을 꼭 기억하고 ㄴ과 ㄷ은 서로 연결이 되어 있음을
생각하고 들어가면 ㄷ 역시 간단하게 해결이 됩니다.
15번 - 기대보다 떨어지는 문제로서 살짝 실망했던 문제입니다.
전형적인 대입 추론 문제입니다.
처음에 4k가 나와 있다는 것에 착안점을 두고 반복되어지는 현상이 결국 4회를 기준으로 변할 수 있다는
것을 에상하면 빨리 해결이 되겠습니다.
(가) 경우에서 a4가 시작이므로 a1, a2, a3는 5보다 큰지 작은지 경우만 나누어서 접근하면 되겠습니다.
20번 - 별로 언급할 내용이 없습니다.
극대. 극소 x값 차가 4/3 이기에 기울기 4인 접선이 바로 (1,1) 지난다는 것은 비율로 금방 찾을 수 있겠
습니다.
21번 - 일직선 상에 놓여진 점은 항상 x축으로 수선을 내려서 삼각비를 이용해서 닮음을 쓴다는 것 기본입니다
22번 - 일단 그래프 해석할 때는 극단적인 예를 하나 들어서 상황에 만제 변회시키는 것을 추천합니다.
문제가 실근에 대한 얘기를 하기에 삼차함수의 x축에 접하는 점이 존재하는 형태의 그림을 생각하고
x축을 위 아래로 옮기면서 해석하면 정말 빨리 끝나게 됩니다.
그리고 중요한 점인 극점 부분을 항상 중심으로 우선 해석하길 바랍니다.
대략적인 부분을 공통 문제 중심으로 해석을 해 보았습니다.
결국 시간 싸움이라는 것 잊지마시고 극값 같은 중요한 포인트나 개형을 중심으로 우선 해석하는 연습을
많이 하길 바랍니다.
본인이 열심히 해왔다면 충분히 발 헤쳐 나갈 수 있으므로 남은 가간은 문제를 중심으로 해석하는 연습을
꼭 많이 하시길 바라고 시간에 대한 압박감과에 대한 대처와 풀이에 대한 전략 수립을 위해
주변 학원들에서 진행하는 현장 모의고사는 꼭 참여해서 연습해두길 바랍니다.
물론 아주 잘하는 친구들은 그냥 자기가 하던 것을 그대로 계속하시면 되겠습니다.
빨리 입시판을 건너길 바라며 파이팅입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
발뻗 ㄱㄴ? 0
100명 넘게 뽑는 과에서 50등인데 발뻗 가능? 표본 400 넘고 6칸신성규...
-
미친4칸추합드리블가능?
-
26살의 나 0
와!
-
걔네 요즘 뭐함?
-
두근두근
-
임마가 6모 끝나고 남친이 생겨버렸노 간만에 3명이서 보려 했더니만………. ㄹㅇ 재밌을뻔햇는데 아쉽
-
대학생들 알려주
-
경희 국캠 낮공 vs 숙대 데이터사이언스(수석) 국캠 낮공가면 전과나 복전도...
-
가군 연고대 떨 나군 성대 인과계 다군 떨 or 중앙대 경영 이런 표본 엄청 많은데...
-
하 시바ㅏㄹ
-
숭실 자전은 안전빵이고 과기 산정시가 붙었을 때 어딜 가야할 지 고민입니다...
-
낙지 0
충남대 169점인데 문사철 붙을 수 있을까요 낙지에선 4칸 불합으로 잡아서
-
나군 작성 완료 0
이제 가군만 정하면 되는데.. 너무 어렵다
-
현역인데요, 보통 수1수2 공부 주기? 가 어떻게 되나요? 번갈아 하나요 아니면...
-
세지하세요 8
재밌음
-
진학사 컷 인과계>사과계로 역전당함ㅋㅋ
-
화장실에서 잠든 적 매우 많음•• 아니면 친구들 사이에 껴서 따뜻하게 잠
-
병원. 약받고 와야지
-
생윤vs정법 0
한의대 지망 사탐러너인데 객관적으로 어떤게 더 좋을가요?
-
독서 김동욱 듣고 문학 강민철 듣는데 일클에서 한 주에 해설하시는 독서 지문 양이...
-
시대 재종반 0
시대 재종반은 과탐 개념(노베 전제로(?))부터 해주나요 아니면 바로 문제풀이인가요??
-
짜잔
-
프사추천좀요 41
이왕이면 미소녀로
-
입맛이 없네요 0
그냥 모든게 하기 싫고 하루종일 피곤함...
-
학원 안에서 피뎊 쓰거나 재본하면 눈치 보일려나..?
-
섹s 2
?
-
점수 높으면서 원서 보수적으로 쓰지 마시라고요 올라가주세요 제발.......
-
아니 진짜 잔칫날에 고1시절 술 500 먹고 만취해서 갑자기 우리집 개가 귀여워...
-
님들아 됐고 진학사 막판에 칸수 올라가기도 하나요? 6칸 7칸 8칸 그것도 1지망...
-
『오늘 마감』 7
-
콩진호중임
-
스나할꺼아니면 먼저 쓰는게 어때?
-
학교 근처가 좀 황량해 보이던데 그래도 재밌나요?
-
추합 많이 돌려나요?
-
이제는 진짜 입시판이랑 빠이빠이 해야지
-
저는 7×100인듯 ㅋㅋㅋㅋ
-
일단 대학 걸고 무조건 재수/반수 할 예정입니다. 원래 이과인데 수능 망해서 일단...
-
떨쳐내야지 0
?
-
존나 불안하네 0
66 둘다 떨어질까봐 걱정하는 거 괜한 걱정이지? 번개치는 날 집 밖에 안 나가긴 함
-
1월 2일이구나
-
질받을 해요 5
물리 역학적 에너지 부분 풀다 짜증나서...
-
총알 아껴야하는데 실수함...
-
시발… 766이 이렇게 되네…
-
새해 끝 2
-
연고대.........
-
눈치싸움 짜증남ㅡㅡ
-
한양대 낮공(자원환경, 원자력, 도시공 등)vs 중앙대 기계 취업생각하면 후자인가요?
-
나도 옯인싸되고 싶어
선생님 항상 존경합니다