칼럼) 미분 가능성 (수정사항 있습니다)
미분 가능성 for Orbi.pdf
어제 갑자기 미분 가능성 나올 것 같아서 칼럼 올립니다!
수2 하시는 분들도 봐두면 좋은 내용 있으니 보시고, 미적 선택자들은 얻어갈 거 많을 듯 하네요.
다운로드 하시면서 좋아요 눌러주세요 :)
오랜만에 이렇게 칼럼으로 인사드리네요 9평 관련 글 아마 작성되는대로 올라갈 듯 합니다!
*수정 사항은 해당 페이지 이미지 아래에 썼습니다. 이미지들 확인 바랍니다
2번에서 두 번째줄부터 수정해주세요
(이번에는 g(x)의 극한은 존재하므로 (미분계수의 정의에 해당하는 x+h 즉, 증분의 극한값) f’의 값은 상관없다. 따라서 fg가 연속이 되도록 f=0만 되도 되어서 인수 개수 0개 초과면 된다.
3번의 경우 g->g’, f’->f로 수정해주세요. 결론인 0개 초과는 맞습니다.
ㄱ의 네 번째줄 좌극한식의 결과를 f(x)의 좌미분계수네서 우미븐계수로 수정해주세요
0 XDK (+21,020)
-
10,000
-
10
-
10
-
1,000
-
10,000
-
이거 들고 잇으면 메디컬 굉장히 쎄다고 아까 본거 같은데저거 들고 잇다는 가정하에...
-
"이재명 놔두고, 尹 체포에 화났다"...공수처 인근 분신 50대, 끝내 사망 1
"민주당사 방화 용의자 확인돼도 '공소권 없음' 종결될 듯" 윤석열 대통령이 내란...
-
2030 지지율 1
.
-
독존님 코기토님 또 계신가
-
개에반데
-
그냥 몇년 전부터 그냥 비트에 쳐박아두고 까먹으면 돈 버는거 아님? 이 생각...
-
서울 신기함 2
시골놈이라…
-
인설약 목표 6
머가 젤 좋다 생각함. 선택
-
아래 네 가지를 고려할 때 둘 중 어디가 더 나은가요?? 전공은 NS / OS /...
-
독서 기출을 최근 5개년거만 다루시길레.. 부족한거 같아서요 혹시 병행할...
-
자율경비가 뭐임
-
요즘 안 우울함 2
메이비
-
작수 수학4인데 3등급 맞을수있을까요? ㅠㅠ
-
그래야 도리에 맞지 빨리해라...
-
수1수2 자이스토리 풀면서 스블 듣고 있습니다.. 방학 중에는 기출에만 최대한...
-
무지성 반수 4
걍 1년 쭈욱 술마시고 남자만나고 놀다가 수능치면 어느정도로 떨어질까
-
인하대 우주예비 0
인하대 공학융합 131명 뽑는데 우주예비받음^^^^^^^^190번 ㅋㅋ 일말의...
-
그럴 일 없음 절대.Never.
-
인문 기준으로 영어 1등급 2등급 차이가 연대식 점수로 6.25점 맞음 ??
-
경건한의식을 해야한다
-
22년도 10명 모집 12번까지 추합 23년도 11명 모집 11번까지 추합 24년도...
-
16살? 14살?
-
고정외 빵임? 1
점공 상황 좀 알려주세요
-
최근 3개년동안 싹 다 수요일 3시에만 발표했다면서 진짜 뒤질래
-
비추인가요? 매월승리, 엮어읽기 양이 적은 것 같아서.. 간쓸개 주간지 푸는 건 어떤지 궁금합니다
-
흠
-
설령 ㅂ타학교를 가더라도 나는 서강인이다..
-
마라탕 먹으러감 3
-
1안 출근할 때마다 1만원 지원 + 학업장려금 10만원 지원해줘서 월급이 대충 한...
-
'전공의 군입대 시기' 국방부가 결정?…의협 "법적 대응" 1
[서울=뉴시스] 백영미 기자 = 전공의의 군 입대 시기를 국방부가 임의로 정할 수...
-
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
오늘 5시 아니면 24일같네
-
외대 개너무하네 0
이걸 조발 안해?
-
일본 식민지엔딩 그러나 미국의 속국으로 70년간 있었던결과 세계 10위권 강대국...
-
저 우울해서 4
집 삿어요
-
안하면 성한서
-
나는 내가 되고 0
별은 영원히 빛나고
-
ㅈㅂ
-
인하대 기계 예비 23번 받았는데 추합 어떻게든 가능할까요? 모집인원은 17명입니다.
-
ㅠㅠㅠㅠ
-
ㅠㅠ
-
지듣노 4
나도 이제 슬슬 공부하러 가야겠다 ㅇ.
-
공수처, 尹 면회 이어 서신 수·발신도 금지…“증거인멸 우려” 3
고위공직자범죄수사처는 ‘증거 인멸 우려’를 이유로 윤석열 대통령이 편지를 비롯한...
-
ㄷㄷㄷ 또죽음 0
무안공항 '로컬라이저 개량' 당시 前 공항公 사장 숨진 채 발견
-
담배 올려놓고 공부하는건 뭔심리지
-
지금은 걍 쉬어도되나요 토익준비하려고 책 사놓고 접수했었는데 환불하려고요 2월말부터 해도되려나..
이거만 보고 수학 150점 받았습니다
가장 좋아하는 파트
9평 문제 궁금하네요 ㅎㅎ,,,
차수논리를 쉽게 풀어내셨네용 좋은글 보고갑니다
오랜만이시네요! 쉽게 쓰려 노력했는데 알아봐주셔서 감사합니다 ㅎㅎ
잘먹을게요! 선우형 기좀 주세요
사랑한다고
오늘공부는이것만한다 아ㅋㅋ
좋은글 감사해요!!!
칼럼추
잘 읽었습니다!
다만 f'(x)g(x) + f(x)g'(x)로 해석하는 부분에서 g(x)가 극한값은 존재하지만 함숫값과는 다른 케이스 부분에서 질문이 있는데요 ㅠ
위 식처럼 정의대로 생각하면 f'(x)g(x)부분에서 g(x)가 극한값이라 f(x)만 0이면 되는게 아닌건가요..? 이때껏 그렇게 알고 있었는데 왜 아닌지 잘 모르겠어요,,
특수 케이스면 위에서 말씀하신 걸로 되는 함수도 있는데 일단 일반적인 걸 다루느라 저리 썼습니다 ㅜㅜ 하지만 앞선 댓글의 것도 가능한 경우도 있어서 결국 문제마다 따져봐야죠…!
아 그렇군요! 일단 1개 초과인걸로 알고 있어야겠네요 ㅎㅎ 좋은 칼럼 감사드립니다!!
제가 다시 검토 한 번 해보겠습니다
고쳤습니다. 제가 3번 설명을 2번에 썼습니다 해주신 말씀이 맞습니다.
2페이지 3번 설명에 오류있는거같아요..! fx f'x gx g'x 반대로써져있는거같아요..
기재했습니다. 제가 오타를 반대로 냈네요 알려주셔서 감사합니다,,
아니에요!! 5페이지 ㄱ 마지막에도 우미분계수 좌미분계수라고 오타있는거같아요 !
맞네요 …. 감사합니다
올려주시는 자료 항상 너무 잘보고있습니다 감사해요 :)
죄송한데 올리신 파일에 수정사항이 반영된건가요?
이미지 밑에 써두었다고 기재했습니다 제가 밖이라 지금 파일 수정을 못하네요,,
좋은자료 너무너무감사합니다