라이프니츠의 위엄 #다이어그램
0. 라이프니츠의 위엄
유튜브에서 '이게 바로 라이프니츠의 위엄이죠' 영상을 봤습니다.
저도 떠오르는 게 있어서 주저리주저리 라이프니츠 썰을 풀어봅니다.
1. 정언문장
모든 S는 P이다
어떤 S도 P가 아니다(=모든 S는 P가 아니다)
어떤 S는 P이다
어떤 S는 P가 아니다
위와 같은 문장을 논리학에서는 정언문장(categorical proposition)이라고 합니다. 쉽게 말해, 두 카테고리 간의 관계를 나타내는 문장이라고 생각하면 됩니다. 수학 집합과 명제 시간에 배워서 다들 익숙할 겁니다.
2. 라이프니츠 다이어그램
라이프니츠는 정언문장을 다음과 같이 선형 diagram으로 나타냈습니다. 따로 설명이 필요하지 않을 만큼 직관적입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 아래 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
3. 오일러 다이어그램
오일러는 원으로 정언문장을 나타냅니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
4. 벤 다이어그램
벤은 오일러 다이어그램을 개량합니다. 아무것도 없는 부분에는 빗금을, 대상이 존재하는 곳에는 x를 표시하는 방식입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
5. 루이스 캐럴의 다이어그램
벤 다이어그램은 집합이 넷인 경우에는 원으로 나타낼 수가 없습니다.
위와 같이 그리면 ‘A와 D만 있는 영역’과 ‘B와 C만 있는 영역’을 나타낼 수 없습니다.
참고로 벤이 제시한 집합이 4개일 때의 다이어그램은 아래와 같습니다.
이거 말고 아래처럼 꿀렁꿀렁한 버전도 제시하긴 했습니다.
_이미지 출처: Venn, J. (1880). On the Diagrammatic and Mechanical Representation of Propositions and Reasonings. London, Edinburgh, and Dublin philosophical magazine and journal of science. R. Taylor.
이외에도 벤은 집합이 다섯, 여섯인 경우까지도 어떻게든(혹은 억지로) 그림을 그려내긴 했는데, 일곱 개부터는 따로 언급이 없습니다. 실제로 컴퓨터 없이 그려내기가 몹시 어렵고, 추상화 같은 벤 다이어그램이라서 실용적으로 활용하기도 어렵습니다.
이런 문제점을 해결하기 위해 루이스 캐럴은 아래와 같이 사각형으로 나타내는 방법을 고안합니다.
(참고로 여기서 루이스 캐럴은 『이상한 나라의 앨리스』, 『거울 나라의 앨리스』 저자이기도 합니다. 작가이기 전에 수학자이기도 했으며, 『Symbolic Logic』을 쓰기도 했어요.)
사각형의 위쪽은 X, 아래쪽은 ~X, 왼쪽은 Y, 오른쪽은 ~Y를 할당하는 거죠. 그러면 아래와 같이 영역이 나뉩니다. (∧는 and, ~은 not을 뜻함.)
셋일 때는? 안쪽에 사각형을 하나 더 만들어서, 사각형 안에 있으면 Z, 밖에 있으면 ~Z를 할당합니다.
예를 들어, 질병관리청에서 제시한 <중독 분류도>는 캐럴의 사각형을 활용했습니다.
_출처: https://www.kdca.go.kr/contents.es?mid=a20308060100
이런 식으로 나타내면 카테고리가 더 많은 경우도 다음과 같이 체계적으로 나타낼 수 있습니다.
_그림출처: Carroll, Lewis (1896). Symbolic Logic. Macmillan.
6. 파그난의 SYLL
2012년에 발표된 따끈따끈한 다이어그램입니다. 키보드에서 완전히 구현가능합니다.
모든 S는 P이다
S→P
어떤 S도 P가 아니다
S→•←P
어떤 S는 P이다
S←•→P
어떤 S는 P가 아니다
S←•→•←P
직관적으로 화살표 방향으로만 이동할 수 있을 것 같죠? 맞습니다. 예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 S→M, M→P이며, 이를 연결하면 S→M→P입니다. S에서 출발하여 P에 도착했으니 결론 “모든 S는 P이다.”가 타당하게 도출됩니다.
다음과 같은 규칙도 직관적으로 받아들일 수 있습니다.
대우규칙: 어떤 S도 P가 아니다(S→•←P) ≡ 어떤 P도 S가 아니다(P→•←S)
교환법칙: 어떤 S는 P이다(S←•→P) ≡ 어떤 P는 S이다(P←•→S)
그러면 연습을 해볼까요? (직관적으로 “이게 되나?” 싶은 추론들은 다 성립합니다. ㅎㅎ)
1. 모든 A는 B이다. 어떤 A는 C이다. 따라서 ____
A→B, A←•→C를 연결하면 B←A←•→C이고, 이는 B←•→C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 C는 B이다.”입니다.
2. 어떤 A도 B가 아니다. 어떤 A는 C이다. 따라서 ____
A→•←B, A←•→C를 연결하면 C←•→A→•←B이고, 이는 C←•→•←B으로 간결하게 나타낼 수 있습니다. 따라서 정답은 어떤 “C는 B가 아니다.”입니다.
3. 모든 A는 B이다. 어떤 B도 C가 아니다. 따라서 ____
A→B, B→•←C를 연결하면 A→B→•←C이고, 이는 A→•←C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 A도 C가 아니다.”입니다.
덧: * SYLL은 syllogisms(삼단논법)에서 가져온 용어입니다. 관련 논문은 다음과 같습니다.
Pagnan, R. (2013). A diagrammatic calculus of syllogisms. In Visual Reasoning with Diagrams (pp. 33-53). Birkhäuser, Basel.
7. 라이프니츠의 위엄
오일러 다이어그램이나 벤 다이어그램은 시각장애인이 점자로 인식하기에는 다소 어려운 구조라고 합니다. 그래서 2015년 서울대학교 산업공학과 삶향상기술연구실(박우진 교수)에서 시각장애인을 위한 다이어그램을 개발했는데, 다음과 같습니다.
이렇게 하면 두 집합이 겹치는 부분이 어느 정도인지 점자로도 쉽게 확인할 수 있다고 해요. 뭔가 앞에서 봤던 것과 비슷하죠? 네, 라이프니츠 다이어그램과 핵심 발상이 똑같습니다. 박우진 교수님 연구실에서 라이프니츠 다이어그램을 알고 만들었는지는 잘 모르겠지만, 라이프니츠가 참 대단한 사람이라는 생각이 들긴 합니다. 이 역시 라이프니츠의 위엄이랄까요. ㅎㅎ
8. 잡담
2019학년도 수능에 나온 '가능세계' 다들 알죠? 라이프니츠가 “이 세계는 무한하게 많은 가능세계 중 최선의 세계이다”라고 말한 데서 출발한 개념입니다.
또한 수능국어/PSAT/LEET 준비하는 분들은 '라이프니츠의 법칙'도 이미 알고 있을 겁니다.
"라이프니츠는 만일 X와 Y가 동일하다면 이들이 똑같은 특성을 갖는다는 ‘동일자 식별 불가능성 원리’를 제시했는데"
_출처: 2022학년도 수능 예시문항 국어 5~10번
"두 대상이 모든 속성을 공유할 경우 그리고 오직 그때에만 그 두 대상은 동일하다"라는 라이프니츠의 법칙"
_출처: 2010학년도 언어추론(예비) 25~27번
만약 예시문항을 분석하지 않아서 이 내용을 지금 처음 본 수험생이 있다면, 아래 영상을 꼭 보길 바랍니다. 3분 정도면 출제 포인트를 하나 정리할 수 있습니다. :)
필요충분조건 표현법 #라이프니츠의 법칙
https://class.orbi.kr/course/1888/lesson/40685
이해황
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어디 가능할까요.. 중경 쪽 물리쓰고싶은데
-
1학기 미팅 15회 미대 여친 사귐 미팅 시그널 약 6회 제일기억에 남는거:...
-
잠이 안와 9
아까도악몽꿨고 오늘잠자리가 너무사나워
-
25는 의사 시험 자격을 못얻고 26 27은 모집정지/축소 갈거고 아무도 책임지고...
-
지금 이러고있네
-
양념 ㅈㄴ 발라야 그나마 먹을만하겠네 맛대가리 ㅈ도 없네
-
후드티 하나 장만했는데 12
해외거라 1월에 온다함요.. 그래도 기대된다 흐흐 문제는 집에 이미 후드티가 너무 많다는거
-
영어를 좋아하는 것 같은데 영어를 못해요 회화전혀 안되고 그냥 영어 문법이 재밌고,...
-
얼버기 7
8시쯤 취침 4시 기상 미라클 모닝 ㅁㅌㅊ?
-
하.. 8
-
자다가 깨버렸다 8
-
usmle치고 매칭 할때도 제일 중요하게 보는건 나이임 아무리 시험 잘 봐도 나이가...
-
상경 정외 사회 심리 이쪽 라인 다들 지원 안하시는가..
-
ㅂㅂ 9
자러감
-
좀 어려울려나 세특으로…
-
잠을 선택하고 시험 때 집중한다는 전략.
-
윤통 대국민 담화에 여론 뒤집혔다! 이재명 화들짝! 민주당 끝났다!
-
대 맨 유
-
아니그냥아무리봐도 소수과목이니까소수과목인거지 첫해이슈빼고는아무문제도없는거같은데....
-
충남대 무역학과 vs 외대글캠 Finance&AI융합 충남대는 최초합했고 외대글캠은...
-
그게 어제 같은데 어쩌다 ㅠㅡㅠ
-
효녀 이분 10
가셨네 ㅠㅠ 잘 모르는데 옛날에 대단했다고 들음
-
안녕하세요 처음 글써봅니다 ㅎㅎ 제목 그대로 혹시 경희대 행정학과 농어촌 전형에서...
-
경북의 인제의 2
경북은 붙었고 인제는 작년기준 추합도는 예비번혼데 대구 살면 어디가야 맞나요 의견...
-
그 시절 생각나네..
-
많이는 안바라고 딱 5경원만있었으면 진짜잘먹고잘살텐데 막 이렇게 새르비할때도...
-
끝나기 2분만에 두 골을 먹히네
-
인문으로 교차할거임
-
적중 20분컷 만점;; 윤성훈 조교 드가자~~ 공고나면 바로 지원 넣어봄ㅋㅋ
-
그냥 세상모두가 물1을 유기한거같음 물1을배울사람이없음 난물1전문인데 아이고아이고...
-
기차로 서울 대전 1시간밖에 안 걸리네
-
국내요
-
질문 한 번에 “씨발” 세 번
-
에리카가 1학년 휴학이 안되서 난 솔직히 자퇴하고 싶었음 처음에 반수한 이유가 과가...
-
예비1번 0
지금 과기대 논술 예비 1번인데 올해 논술로 제가 지원한과 1명뽑는다는데 될까요?
-
대학 문과로가면 0
아웃풋이 극과극인가요? 로스쿨 가기도하고 누군 개백수고 그런건가
-
시험기간만 되면 족보 없어서 너무 불리해짐 족보 정상화해줘!
-
자야겠다 6
잘달렸다 자신아
-
시험 7개 보는데 17일 종강임
-
아주대 다군 3칸이 뜨는데 아예 불가능인가요..?상향지원으로는 괜찮은건가요..?
-
갑자기 피아노에꽃혀서 가슴이불탐 근데 학원가서 씹덕곡치고싶다고하면 경멸하는눈빛으로...
-
바로 원서죠 그럼 원서보다 중요한건 뭘까요 바로 대학입니다
-
대학교물어보면 난감해질거같음 삼룡인데
-
진락사 기준 5-6칸 , 선호도 참고용으로 투표 한번씩만 부탁드립니다
-
댓 ㄱㄱ
-
얼굴은 봐줄만 하면 되는듯
-
“군입대“
-
놀랍게도 이걸한캔먹으면 활동시간이 3시간늘어남 즉 3시간에 한번먹어주기만하면 무한히활동가능
-
글을 쓰다만 거 같아서 때려침
파그난의 방식은 좀 어렵네요.
킹갓해황쌤
이것이 바로 라이프니츠의 위엄이죠
이것이 바로 실력파쌤의 위엄
실력파임을 강조하기 위해 본문하단에 제 얼굴사진을 방금 넣었습니다.
찰스 도지슨 A.K.A 루이스 캐럴
뭐라는거죠?
오..
이..이게뭐노..
해황쌤 리트 준비생인데 혹시 오르비클래스에 리기추 강의 업로드 일정계획이 어떻게 되실까요?? 막판에 3개년 기출 정리하고 시험장 들어가려고 하는데 21년도와 22년도는 각각 2지문씩밖에 업로드가 안되어 있어 근 1-2주 내로 추가 업로드 계획이 있으신지 궁금합니다 ㅠㅠ
감사합니다!