문제 투척
오랜만에 내 이름 실검에 올라온 기념
거의 배포한 지 한 달 되어가는데, 그 이후로 70문항 정도 더 만든 듯...
그리고 제 생각에, 학습하는 데에는 도움이 되는데
정작 모의고사에 넣기에는 애매한 문항들이 있어요.
그런거 가끔 올려드림
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잇올도착 4
투데이 스타트
-
캬캬캬
-
ㅋㄷ 3피스 팔아요?
-
과외때메 수학,생명은 공부할건데 화학도 해야되나 화학은 과외 수요가 없을거 같은데
-
현강 토리님들 곧 오리진 끝나고 본편가는데 필기도구 뭐뭐 쓰나요?? 알려주시면 천사 ㅠㅠㅠㅠㅠ
-
막히고 숨이 잘 안쉬어지는데 (ㄹㅇ임) 비정상임? 악깡버 하면서 스스로...
-
지구과학 질문 1
반수할건데 아직 확정되지는 않아서 메가패스는 안샀는데 지구과학 독학 가능함?...
-
최초합 가능한가여…?
-
인하대 조발 0
하루라도 땡기면 안되냐
-
춥다 추워 2
-
얼버기 7
한시간 정도 잤네용
-
오야스미 2
네루!
-
ㅈㄱㄴ 현역 기공붙엇는데 반수생각중이라
-
얼마만이냐
-
돌아오기까지가~~
-
얼버기 엄벌기 4
피고내
-
싸펑 엣지러너 11
대충 먼내용이죠
-
내가 텍스트로 읽는게 더 좋아서 그런지는 모르게ㅛ는데 웬만한 실전개념서 중에는...
-
김승리 질문 0
김승리쌤 문학이 말이 많던데 어떤가요? 저는 왜 그런지 이유를 확실 하게 파악해야...
-
사탐 인강 6
과탐 보다가 이번에 사문으로 사탐런하려고 하는데 메가말고 EBS 수능개념 강의만...
-
잇올러 기상 10
완료
-
나 스스로가 타인에 비해 보잘 것 없이 느껴질때는 화도 많고.. 미워하거나 맘에...
-
연애 ㄱㄴ? 걸리면 쫒겨나나요?
-
얼버기 19
-
내가 생각하는 양의 이미지가 아니네 몸이 무슨..
-
다들 무시하는거 맘아프다.. ㅜㅜ 수능 좀 망해서 가긴 해도 경희대 좋아해서 난...
-
22학번 중대 경영을 현역으로 입학했습니다. 그러다 반수를 하고 실패해서 군입대를...
-
아가기상 6
모두 안뇽
-
.
-
풀고나니간 4
원래 줠라 화려한 풀이로 기억햇는데 이게 이거박에 안되? 이러다가 시간 다박아서...
-
무슨 1강부터 계산을 시키네 이거 뭐하는 과목임
-
이 풀이는 할게 산더미처럼 쌓여있지만 새벽에 미쳐서 밤을 새버린 대학생의 똥정도로...
-
내 인생이니까 맘대로 살라고 하시는 것 같은 학생 때는 조금은 뭐라 하셨어서 가끔 싸웠었는ㄷㅔ
-
인간주제에..
-
유도하고싶은데
-
히히 똥 히히 1
히히
-
해설써봄
-
수드라로 태어났으니 공부라도 열심히 해야지 ㅅㅂ...
-
얼버기 2
사실 안 잤어용ㅋ
-
얼버기 1
인 줄 알았으나 아직 안 잠
-
트럼프 행정명령으로 이재명은 오토 윔비어법으로 처벌할거고 부정선거 또한 밝혀질 거임...
-
낮에 확인해봐야지..
-
걍 n축으로 밀어푸는 풀이가 잇던거 같은데 기억이 안나 없는건가 이거 잇던거같은데 분명
-
ㅎㅇ 1
-
본서버완화도해줬잖아
-
얼버기 4
이따 또 잘거임
-
어느 쪽으로든 힘조절 잘 안 돼서 나오지 않을까
128?
굳
128!!
굳
128...
맛있다..
오이시
하나 팁 드리자면, 애초에 제곱근 나올거 같으면 f(x) 한 근을 k^2으로 두고 스타트 끊는 게 나을 수도 (k>0)
f의 근을 k로 뒀다가 못풀었었는데 k^2으로 두니까 바로 풀리네요 팁 감사드려요
2020년 3월 교육청 나형 21번이 생각나네요
지인선 n제 시즌 2 생각 있으신가요
이미 만들고 있어용
" 알파는 0 일 수 밖에 없다 . "
마지막 근 구할때 ‘감각적인 직관’ 사용했습니다 ㅎㅎ
4넣으니 딱 되더군요
엌 저도 ㅋㅋ
알파에 대한 방정식을 세워서 머리가 나갈 뻔했다가 루트 알파에 대한 방정식으로 다시 풀어보니 깔끔하게 풀리네요! 소소하지만 좋은 팁 배워갑니당
인수분해 잘 안되서 근의 공식 썼네요 ㅠ
그래도 합성함수의 근 개수 다루는 방법과 근의 대소비교를 신경써야하는데에서 좋은 연습이 되었습니다!
작년 6평 22번이 생각나네요
지인선n제2랑 지인선모고는 판매인가요 배포인가요??
아직 구체적인 계획은 없지만, 내년에 나올 지인선 n제는 모의고사 형식(공통 4점만)으로 이루어져있고, 15에서 20회분으로 구성할 예정입니다. 그래서 지인선 모고는 따로 없을듯
저 새로 나올 n제는 판매할 예정인데, 그럼 제가 뭔가 사교육 조장하는거같은 죄책감도 들어서… 크게 2가지 비단 주머니를 계획하고 있어용
올해는 이미나온n제 하나랑 새로운 n제하나만 내시는거져?? 판매하셔도 되죠 뭐
잘 풀게여
올해는 못나올듯 ㅠ
지인선n제 한바퀴 더 돌리고 딴거 풀어야겟네여
파이팅이요~
그래프 그려서 이렇게 풀어도 되겟죠…?
굳이 근데 그릴 필요는 없을듯?
고1 학평에 나와도 될 문항이네요
그건 ㅇㅈ
삼참수…
f=2/5(x+2)x(x-(4-f(-1))^2)
k=f(-1)이라고 둘 때
(4-k)^2+1=5k/2
k=2 or 17/2
k=17/2이면 (x-17/2)^2=81/4의 근인 13이 4보다 크므로 나 조건에 모순
2/5 10 8 4
128
어차피 답은 자연수니까 나머지 하나 4라고 하고 풀어서 128이 나오긴 했는데 나머지 한 근이 81/4이 안 되는 이유가 뭔가요..?
윗분이 풀이해주셨네요 좋은 문제 감사합니다
어떻게 한달만에 70문항을..
나도 문제 잘 만들고싶다
81/4이 안되는 이유가 뭘까요...? 마지막에 4랑 두개중에 답이 4로내야 마킹이 되니까 4로했는데
아...위에 있네요 제송합니다