20년 동안 본 수학문제 중 제일 어려운 문제 (해설)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기분 좋음 2
이대 굿즈! 곰돌이 넘 귀엽죵 옛날에 받은 것도 꺼냈어여 이대 호소인 모드...
-
올해 추합 0
올해 의대 증원 이슈로 인해 추합이 좀 많이 돌까요??
-
2022: https://orbi.kr/00042977866 2023:...
-
보기만 해도 눈아픈데 어떻게 하는 걸까..
-
into the sun 리버틴즈 노래입니다.
-
진짜 맛있네 내가 먹은 딸기라떼중에서 제일 맛있음
-
누구는 완자랑 수특 기본문재 돌리고 1등하고 누구는 마더텅 수특 수완 싹다 박박...
-
가해자는 “전교 1등 학생이 인사를 안 받아줘서, 앞으로는 서로 인사 잘 하자는...
-
내신 독서,영어,중국어,정법,화1 유기하고 수2,기하만 공부하고 싶구나
-
살 찌겠네 ......,,,,,
-
하제발요ㅠㅠㅠㅠㅠㅠㅠ ㅠ ㅠ ㅠ ㅠ ㅠ ㅠ ㅠ뮤뮤뮤뮤뮤ㅠㅁㅁ
-
놀이공원은 같이 갈 사람이 없고 영화는 볼 영화가 없어서 못 써먹고 있음..
-
의치한 서울대? 1
둘다 못가는데 알바노
-
가슴이 시키는 대로 해라. 끝
-
히히 9
1월 홋카이도 여행 숙소 예약 중인데 기대된다
-
수2, 미적은 미들까지 했는데 수1은 미들부터 너무 빡센데.. 다른거 풀까요 ?
-
생각해보면 휴일은 항상 이랬던 거 같기도 하고
-
에휴
-
2024년 11월 2주차 韓日美全 음악 차트 TOP10 (+11월 1주차 주간VOCAL Character 랭킹) 2
2024년 11월 1주차 차트: https://orbi.kr/00070032058...
-
어느정도 반영되는지는 아직 아무도 모르는것임뇨?
-
소설말고 상식을 좀 기르고 싶어요. 정의란 무엇인가. 총균쇠 이런 류의 책 추천해주세요
-
메가스터디 환급 조건에 보면 단, 허위 답안(한 줄 세우기, 반복 번호 등)을...
-
세종대 수리논술 0
허수 많나요?
-
낼 중논 갈지말지 고민 돼서용
-
데굴데굴 구르면서 들어갈텐데
-
숙대약대 논술본거 잘한거겠지 서울대 안될거같아서 약대논술 쓴거 다감
-
이게맞나... 원래도 이정도 쉬면 이렇게 되긴 했음ㅠ 남들은 안그러시나요.. 지금...
-
밐 일러 6
밐밐
-
일반고 예비고3입니다 이번 학기부터 내신보다 정시에 중점을 두고 공부하고 있어서...
-
우리 누나가 이대 다녀서 ㅈㄴ이해가면서도..
-
이분 생각났음 ㅅㅂ
-
1등급 뜨겠지 하 ㅅㅂ...
-
? 확통을 버릴 필요가 없는거 같은데
-
커리가 안 올라오는 거 보면 올 해 물리1,통과만 하시려나 싶은데요. 교재주문이나...
-
기하 풀어야된다고;;
-
군대와서 놀란 거 11
웃음체조가 진짜 있다
-
제곧내ㅇㅇ 화작 89점 미적72점 정법사문 둘다 44점? 인데 찍은거 제외임 아니...
-
돈이 마니나감 한달에 고정 -60 ??
-
그런 느낌이 듦뇨
-
3등급 초반인가요?
-
4순데 생2 지1 어떤가요 생2가 노벱니다 물1 고여서 버립니다 의대 목표구요...
-
작년보단 어렵지 않았음? 작년보단 틀릴만한거 있었던 거 같은데
-
경북대 신소재 aat 10
150/350이면 합격 ㄱㄴ?
-
D-355 공부 1
-
걍 반수할까 7
서성한은 적당히 쓰면 될것같긴한데 쌩재수가 갖는 이점이 있을까요 반수에 비해서.....
-
기하랑 확통때문에 진짜 미취겟다 밤 새야지
-
국어 4 데미지가 너무 큼 3만 떴어도 그나마 나을텐데
-
이새끼 진짜 3
https://youtube.com/shorts/Gx0SYhfeiVg?si=Yb8cQ...
-
요즘은 특히 진짜
-
이러면 또 학력저하라고 틀딱들이 비웃겠지
!
이게 수학?
이게 이렇게 푸는 문제엿다니..
이건 어디 문제인가요?
경북대 의대 2021 모의논술입니다.
내생각엔 이게 더 어려운듯
리만가설아님?
쉿
혹시 5번입니까..?
유튭 보다가 비자명한 실수부가 1/2 라고 했던거 같은데..ㅋㅋㅋ
그거 증명하시면 100만달러 ㄱㄴ
어디까지나 추측일뿐...
ㅋㅋㅋㅋㅋ 와 난리났네
편미분 때리면 안되나요
그렇게 안해봐서 잘 모르겠네요, 된다고 해도 현장에서 편미분 쓰면 감점일 것입니다.
넵 감사합니다
이렇게 풀면 안되나요?
미분 가능하다는 조건 없기 때문에 안됩니다
미분가능성이 보장되어있지 않은상황에서는 미분법은 사용하지 못하지만 미분계수정의는 사용할수 있는거 아닌가요?
미분법이 애초에 미분계수의 정의로부터 나온 것이기 땜에 안됩니다
사용하신 g'(0), f'(x) 등의 수/함수가 정의되는지 부터 논의해야 되는데, (g(h)-1)/h 의 극한값이 존재한다는 보장이 없으므로 정의가 되지 않습니다
넵 감사합니다
죄송하지만 아무리 고민해봐도 의문이 풀리지 않아서 다시 질문드립니다. 위와같은 문제에서는 f'(x)를 구할때나 f'(0)을 구할때 이 함수나 수가 존재하는지 증명하지 않고 푸는데 위 문제와 이 문제의 차이점은 무었인가요..?
네 안녕하세요 미분에 대해 보기위해 우선 문제부터 간단히 보면,
1번 문제는 x=y=0 집어넣으면 바로 f(0)=0이 나오고요, 따라서 주어진 극한을 변형하먄 '미분계수의 정의' 에 따라 0에서의 미분계수, 2번 문제를 풀 수 있습니다. 이때 저 "극한값이 존재하기에" f'(0)=1 인 겁니다.
3번째 문제는 사진과 같이, 항등식을 이용해 극한값을 변형할 수 있습니다. 그런데 앞에서 이미 f(h)/h 의 극한이 1임을 알아냈고, 따라서 극한이 "존재하기에" 도함수가 존재하는 것입니다. 그 전까지는 미분 가능한지 모르죠.
반면 제가 올린 문제는 같은 방법으로 극한값을 구하려는 시도를 했을때, 이 문제와 달리 극한값이 존재하는지 안하는지 모릅니다.