심플한 도형 풀이 공개합니다
이전글에 올렸던 문제의 심플한 풀이.
먼저 사고과정은 아래와 같습니다.
1. 호 CD와 호DE의 길이가 같다
2. 색칠한 부분의 넓이가 삼각형 BDE와 같다
3. 삼각형 BDE는 삼각형 ABC와 닮음이다
4. 선분DE 또는 BD의 길이를 구해서 닮음비를 구한다
5. ABC의 넓이를 구해서 넓이비(닮음비 제곱)를 곱한다
깔끔하게 답을 구할 수 있습니다.
정답은 50분의 21루트3
그런데 말입니다. 진짜 문제는, 시험장에서,
각각의 과정을 어떻게 떠올릴 것인가
각 단계별로 사용되는
도형을 다루는 기본 원칙들을 알려드립니다.
1. 원 나오면 반지름
원 위의 특수한 점은 반드시 중심과 연결되어야 합니다.
'중심과의 거리'가 같다는 것이 원의 정의이기 때문이죠.
따라서 점 A, C, D, E 는 중심O(로 정의)와 연결되어야 합니다.
이때, C, D, E에 의해 만들어지는 반지름에 의하여
중심각이 만들어지는데, 둘다 60도가 됩니다.
따라서, 부채꼴 OCD와 ODE는 합동이고
호/현 CD와 DE의 길이가 각각 서로 같습니다.
여기서, 원주각 CAD와 DAE가 같으니 굳이 반지름 없이도
호가 같다는 것을 알수 있지 않는가?
라고 생각할 수 있겠죠. 그게 바로 보인다면 문제는 없지만,
원주각에 대한 모든 성질은 중심각이 있어야만 유도되는 것입니다.
따라서 원주각이 등장하면 중심각으로 연결하는 것이
더 우선되는 일관된 원칙이어야 합니다.
2. 복잡한 도형을 간단한 도형으로
활꼴 CD를 DE부분에 채워서 삼각형 BDE를 만드는 아이디어
평가원에서는 의미없이 복잡한 도형을 주지 않습니다.
단순히 계산을 복잡하게 하지는 않는다는 뜻이죠.
기출에서도, 복잡해 보이는 도형을
다른 도형으로 변환시켜서 간단하게 보이는 여러 예를
찾아 볼 수 있으니 연습해 두어야 합니다.
3. 삼각형의 기본은 닮음
중학수학에서 배우는 도형의 매우 많은 부분에서
삼각형의 닮음을 이용해서 증명을 하곤 합니다.
할선 정리를 이용할 수도 있지 않나?
라고 생각한다면 할선정리의 증명이
삼각형의 닮음에 의한 것임을 공부해야 합니다.
4. 길이는 수선의 발을 이용
선분DE 또는 BD의 길이를 구하기 위해서는
먼저 선분 BC의 길이를 구해야 합니다.
이때, 코사인 법칙을 사용할 수도 있지만
C에서 AB에 수선의 발H를 내리면 됩니다.
각 A가 특수각 60도임을 이용하고
피타고라스 정리를 한번 더 쓰면
BC이 길이를 구할 수 있습니다.
이런 과정은 코사인 법칙의 증명입니다.
5. 넓이는 가장 쉬운 방법으로
위에서 수선의 발을 내리고 수선의 길이를 구했다면
넓이를 구할 준비는 이미 모두 끝난것이겠죠.
계산만 하면 됩니다.
사인함수를 이용한 넓이 공식은 결국 높이,
이 문제에서는 수선 CH를 구하기 위함이므로
특수각을 이용해서 구하는 것으로 충분합니다.
어떤가요?
중학수학에서 배우는 내용만으로 이 문제는 해결됩니다.
이 도형은 작년에 가형에서
무한등비급수와 프랙탈 문제로 출제되었고
오답률이 매우 높았던 어려운 문제였습니다.
단계별로 발상을 떠올리기가 어렵다는
학생들의 의견이 많았죠.
도형에서의 발상,
반드시 공식의 증명과정에서 나옵니다.
교과서에 기반하고 있지 않은
의미없이 복잡한 도형은 절대로
평가원에서 출제할 수 없습니다.
코사인법칙, 사인법칙, 삼각형 넓이, 할선정리 등등
증명할 수 있다면 그 과정을 꼭 외워두세요.
그리고 그 과정에서의
매우 기본적인 행동패턴들,
수선의 발 내리기, 반지름 그리기 등을
정리해 두면 발상때문에 고민할 필요가 없습니다.
도형을 마주치면 해야할 행동을 해라.
그러면 자연스럽게 해설지에 있는 그림이 완성될 것이다.
이것이 도형 문제에 대한
수학강사 이승효의 철학입니다.
이번 Live100 시즌1 <6평, 100분이면 충분해>
를 통해 제가 깔끔하게 정리해 드리려고 합니다.
이번 한번으로 도형문제는 끝날거라고
자신있게 말씀드리겠습니다.
6평대비 100분 특강
<도형을 심플하게 만드는 꿀팁!!>
수업 일시 : 5월 29일(토) 오후3시~4시40분
수강료 : 20,000원 (교재비 추가 없음)
현강 장소 : 강남(서초)오르비학원 (강남역)
- 주소 : 서울특별시 서초구 서초대로 74길 33 비트빌딩 2층
- 연락처 : 02-522-0207
- 지도 : https://academy.orbi.kr/gangnam/ipsi_result/directions
비대면 수강(실시간 스트리밍)도 가능합니다.
결제 완료 되면, 수업일 전에 수강 방법 안내 문자 발송 됩니다.
수강신청 바로가기
https://special-oa.orbi.kr/booking/gangnam/payment?showonly=349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365
* PC버전에서 수강신청하는게 좋다고 하네요.
결제에 어려움이 있다면 학원으로 전화주세요.
Live100 결제관련 공지 참조 https://orbi.kr/00037693486
이승효 강사 소개
메가스터디 러셀, 메가스터디 재수종합반 출강했고
현재 오르비학원 강남 / 대치에서 수업중인 수능수학 전문 강사입니다.
질문은 댓글로 받습니다. 좋아요와 팔로우도 감사드릴게요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
라고 바뀌었네요
-
에타생활 잘한듯
-
매화범 표범 장산범이 호랑이들이면 방화범도 호랑이냐는 말이 잊히지 않는다. 0
내가 했기 때문이다.
-
1시간째 이꼴인데...
-
대부분 98이긴 하던데 97도 있고 어떤 곳은 96까지 얘기하던데 이렇게 까지 내려갈까?
-
이대 수리 논술 2
이화여대 수리논술 최저 수학포함 2합5로 알고잇는데 탐구는 과탐이든 사탐이든...
-
이형이랑 방탈출가면 삽캐리해줘서 재밌었는데 ㅋㅋ 걍 개똑똑함 과탑임 ㄷㄷ
-
1컷 맞아야돼서 선택에서 좀 만회 잘해야하는데 확통 뉴분감 1회독 하면 보통 1틀...
-
저는 그냥 아무 말도 안하고 가만히 있으려고 하는 편인데 이게 표정에 드러나는 걸...
-
논술…. 0
하……. 개빡치네 논술 준비하고있는거
-
종강 하는대로 바로 편입 공부 시작 하려는데 어떻게 해야 할까요? 자연계열이고 서울...
-
제곧내
-
.....
-
물2 지2 언미 95 100 1 48 47 어디까지 되나요? 3
의대 걸어두고 안된다면 설의될때까지 볼겁니다 과목은 유지할거구요 제가 물1보다...
-
뜨거운 물. 푸욱 삶아졌습니다. ㅠ-ㅠ
-
전 잘 모르지만 커뮤 대충 보면 국어 - 강민철,정석민 수학 - 현우진,김범준 영어...
-
만잘알 있으신가
-
화작 확통 생윤 사문 메가기준 백분위 90 81 78 74 영어4 입니다 중경외시...
-
이해원n제 / 설맞이 아카이브 보통 개정 되나요?
-
기출->무조건 이것이 기출이다 (해설이 매우 자세하고 틀딱 초고난도 기출까지 포함)...
-
광주교육청 서울대학교 가채점 결과 뉴스 분석팀은 이를 토대로 서울대 인문은...
-
백분위(등급) 화작 미적 영 사문 한지 한국사 65(4) 69(3) 3등급...
-
사탐런 0
재수하려고 하는데 생명 지구에서 사문 생윤으로 바꿀까하는데 생윤이 올해는 아니였지만...
-
이즈나도 이즈나 미야오도 미야오..
-
일단 나
-
미적 기하 확통 순
-
동네 작은 학원 다니면서 기출 실모로 미적 76점까진 받았는데 그위를 뚫으려면...
-
정법은 절대 비추임 표본 수준이 너무 높음 난 사상가가 싫고 지리가 싫고...
-
스스로 이과임을 자처하지 않는다면 공대에 보내주마 나: ㅅㅂ 어카지
-
그게 나야 바 둠바 두비두밥~ ^^
-
뻥임뇨
-
덬코뿌림 15
댓글달몈 추첨을통해
-
빈순삽 2222 5544로 찍어서 8개중에 5개 맞춤
-
물리 1번 틀렸는데 아무리 생각해도 틀릴 수가 없는데ㅠㅠㅠ
-
미적92 백분위 6
공1미1틀린 92점인데... 백분위 98은 나올까요 ㅠㅠㅠ
-
동국대 목표로 했었는데 낮은 학과라도 될까요 그리고 보험용으로 가천대 논술 넣어놨는데 어떻게 할까요
-
네
-
나도 주작충 실시간으로 보고 싶다
-
네
-
학원에서 국어 모의고사 해설을 하기로 했는데 한 학년에 50~70명정도 있음 80분...
-
쌍지하길잘했다
-
육군 전역 두달남은 03년생이고 시립대 공대재학중입니다 22 23 25수능(군수)...
-
우리도 치환적분 't-치 ' 이런 식으로 부르면 안 되나 7
미국은 치환적분 할 때 문자 t 말고 u 써서 "u-sub" 이렇게 부르던데
-
올해는 알짜 기출 풀었는데 이건 통계같은거 안맞는거 싹다 갈았다고 기상쌤이...
-
방금 투표했더니 투표비율이 2:2:7 나왔음요. 왜 설수의를 더 선호하시는지 궁금해요
-
탐구 공부 안한거 아니고 개념기출 실모까지 다 돌렸습니다 실력에 비해 점수...
-
과거에 본 수능에 대한 얘기는 이제 그만하도록.
-
교수님들 귀찮음뇨
-
사진에 네모친 표시한 부분에서 x를 tan로 치환하는 방법이요 전에 교과서에서 한번...
npc 하이
사문의 마법사다
문제풀이과정까지 정말 감사합니다. 유독 취약한 문제유형중 하나가 함수와 도형부분입니다. 이런 도형문제 접하면 기본이 20분정도 뚫어져라 보다가 겨우풀이 시작하는 수준에서 시작하게 되는 제 자신..(..)
몇가지 원칙만 확실히 잡아두면 도형문제는 기계적인 반응으로 풀어낼 수 있어요~ 도형 잡는것이 함수보다 훨씬 쉽습니다.
저같이 수학에 매우 취약한 사람도 수강신청해도 이해할 수 있을지요..?(...)
[[특강]아름다운 시작 (이벤트 마감)] https://orbi.kr/00033842790
도형과 함수에 대한 기초특강 추천합니다.
두 삼각형 BDE와 ABC가 닮음인 걸 확인하는 논리가 무엇인가요?.?
해설 정말 감명깊게 읽었습니다..!
제가 제대로 가고 있구나 확인할 수 있었고요
굿굿!! 각A와 마주보는 각인 CDE의 합이 180도이기 때문에 각A=각BDE 가 된답니다.
이렇게 보는게 맞는거였네요
다음에 기회가 있다면 쌤 수열특강 들어보고싶습니당
수열을 심플하게 보는 눈을 기르고싶어서요..!
<16416-수학1> 수업을 들어보세요~
수열과 도형, 삼각함수 그래프까지 심플하게 정리합니다저문제 현장에서 첨봤을때 뭐지 싶었던..ㅋㅋ
충격적이었죠. 사실상 오답률 1위였던.
원 내접 사각형 성질이 핵심!
굿굿!
아 ㅋㅋ 승효쌤이 내 프로필에 Y 달아줬다고 ㅋㅋ
ㅋㅋㅋ.ㅋㅋㅋ.ㅋㅋㅋ 반갑다
조만간에 보자
교재는 따로 없나용?
라이브는 밴드에서 pdf로 올라가고, 현장에서는 프린트로 나갑니다~
라이브말고 녹화해둔걸 비용지불하고 볼수는 없을까요?