대치동어둠의양적관계어드밴스드유리함수점근선궁극의얼티메이트해석법
이번 글은 편하게 반말로 함.
제목을 보면 알 수 있듯이 이 스킬 비슷한 무언가는 쓸 일이 어지간하면 없음.
지금까지 쓴 칼럼들은 어려워도 쓸 일이 꽤 있었는데 이번엔 쓸 일이 없는거 같음
쓸 일도 없는 스킬을 왜 칼럼으로 쓰느냐? 심심한데 기분이 좋아서 그럼
다음부턴 쓸모있는 칼럼을 올리겠음ㅎ;
(추가 : 아니 이거 어쩌다보니 메인왔는데 혹해서 남용하지 마세요 취급위험.. 어지간하면 불리하고 사설문제에 가끔 유리한느낌)
일단 이 방법은 내가 처음 생각한 풀이는 아니고, 모 머리좋은 고2학생이 알려준 풀이임. 걔 좀 천재같음. 아니 천재맞음 ㅇㅇ. 아무튼 이 방법은 상황에 따라 풀이가 매우 단축되지만, 상황에 따라선 풀이가 매우 늘어짐.
혹시 머리가 아주아주아주 비상한 몇몇 학생들은(ex : 이 풀이 알려준 학생) 써먹을 수 있겠지만 일단 나는 못써먹을듯(쓰지 말란말). 시작합시다.
화1에서 유리함수가 어케 쓰이는지 모른다면, 참고용으로 이전 칼럼을 보고 오면 좋을듯
아 근데 사실 아직 유리함수 잘 안쓰면 이 칼럼이 쓸데가 없나?
걍 아직 유리함수 모르면 좋아요만 누르고 가줘ㅁㄴㅇㄹ
이 문제에서 몰수 비를 그래프로 그리면 아래와 같음
근데 알다시피 유리함수는 점근선을 가짐. 지금 넣어준 B의 몰수가 m/a면 점근선인건 아는데, x축 점근선을 모름. 그 높이를 대충 k라고 잡자.
근데 이 k가 뭘 의미하는지 미리 생각해보면, B를 음의개수로 무한히 투입했을 때 생성물/반응물이잖음. 그리고 한계 반응물은 계속 B임
그러면 C의 개수는 음수로 달리고, A의 개수는 양수로 계속 달릴거임. 이때 C/A는 k이고, 2/a가 될 거라는걸 알 수 있음. 이해 안될테니 식으로 써서 보여주면
ㅇㅈ? 계수 비가 될거임.
암튼 나머지 설명은 밑에 그림으로 대체함. 투입한 B의 양이 2일때 분수 값이 4니깐..
즉 점근선의 교점에서 유리함수 점을 찍었을 때, 넓이가 같다는걸 이용해서 식을 세우는게 이 풀이의 핵심임
1) 점근선의 의미를 생각해서 점근선의 값을 구하고
2) 넓이를 통해 식을 세운다.
근데 보다시피 식이 훨씬 더러움. 심지어 투입한 B의 양이 3일때는 유리함수 적용도 못하고, 반응식 깡계산 해야함. 뭐 이런..
그래도 마지막 마무리엔 유용할수도 있음. 이렇게. 참고로 이 문제에서 m=9 a=4
사실 이렇게 보면 이게뭐냐..싶을텐데 사실 아래 두 문제 예시로 더 풀건데 이건 또 매우 잘먹힘.
왜 안좋은 상황만 보여줬느냐? 혹시 혹해서 유리함수 문제마다 이 풀이 쓰려고 할까봐. 눈에 팍 들어오는 직관적인 상황에선 가끔 유리한데, 대부분의 상황에선 불리하니깐 안쓰는게 좋음.
그래도 아주 쓸 일은 없는거 아닌게, 평소에 유리함수를 자주 그려서 푸는 편이고 계산 직관이 뛰어나고 수학을 잘하는 학생이라면 이거 써도 될듯. 근데 그러면 이미 20분컷 만점일텐데.. 뭐 살아남기 모의고사 25분컷 50점을 위해선 유용할수도 있음 ㅁㄹ
암튼 다음 문제를 한번 이걸 응용해서 풀어보자
풀이 1
풀이 2
솔직히 이 경우엔 꽤 쓸모있는 것 같음. 이렇게 넓이를 구하기 편하고 그림이 유리함수로 미리 주어진 상황에선 생각보다 꽤 쓸모있음.
혹시 이 스킬을 쓸 생각이 있는 학생이 있다면, 앞선 문제처럼 유리함수 점근선이 오른쪽에 있으면 쓰지 말고, 이 상황 처럼 유리함수 점근선이 왼쪽에 있는 상황은 꽤 쓸만한것 같으니 이 때 써보면 좋을듯.
마지막 예제
풀이(귀찮으니 부피=몰수로 두고 풀음)
이 문제도 되게 유용함. 마지막 마무리에서 일차함수 기울기를 이용했는데, 투입한 B의몰수/C의몰수를 평행이동 하고 미분하는 느낌. 이거 말고도 다른 사설문제들에 적용 해 봤는데 꽤 풀리는 경우 많음. 유리함수 그래프가 이미 그려져있거나 그리기 쉽고, 왼쪽에 점근선 있으면 해볼만한 것 같음. 더 확장 가능성이 있어보이기도 하고..
핵심은
1)점근선의 의미 상상 및 값 추론(물질의 개수가 음수가 되는것을 허용하고 무한으로 극한을 보내기, 한계반응물은 고정)
2)유리함수 넓이 이용/유리함수 식 이용
이거 두개. 혹시라도 쓸 생각이 있다면 충분히 많은 연습을 하고 쓰는걸 권장하고 이 풀이로만 문제를 풀고 정석풀이를 연습 안한다면 수능 당일날 위험할 수 있으니 정석 풀이도 꼭 연습해보길 바람.
끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
백분위 메가 기준 화작미적생1지1 92 81 2 91 89 공대 어디가능한가요...
-
카톡 배사가 카이스트 건물이랑 로고 보이게 있는건데 그럼 카이스트 간거임????
-
mt도 안가 행사도 안가 rc프로그램도 안해 기숙사에 감금됨 그냥 너무 심심하다 진짜
-
낮3이면 따라가기 힘드나???
-
ㅇㅈ 0
이기노데스웅챠
-
빛에너지를 흡수하는 광합성도 흡열반응에 포함되는데 그렇다면 빛에너지를 방출하는...
-
기하의 장점 0
뭔가요?
-
나루토 재미따 6
아직 전체1/3도 안와서 그런건진 모르겠지만 스토리가 짜임새있게 잘 짜여진 느낌
-
화미생지
-
한양대 식품영양학과 논술 보러 가야할까요? 메가 기준으로 지금 현재는 한양 식품이...
-
궁금궁금 확통사탐? 아무리그래도 컷으론 힘드려나
-
1월에 CPA 시작해서1,2월달에는 고시원에서하고 3월에 군대에서 조금씩이라도...
-
올해는 03이 갈 때
-
혹시 조언해주실분 계신가요?
-
코인으로요즘돈좀벌었음 10
나한테오면술사줄께 남고생들연락줘ㅎㅎ
-
지금 봐봤자 의미없는건 알지만 텔그는 연고 하위-성한 상경으로 보고 진학사는 성한...
-
48점, 27번틀 27번에 1번 대우가 정확히 뭔지 몰랐는데 맞는 설명이었고요.....
-
지금 이거 만표 73 잡히고 있는데 님들 이거 그대로 유지될 거라고 보시나요..?...
-
내 진로를 익명의 공개적인 공간에서 도움을 구한다는게 웃길수도 있지만, 다양한...
-
국어 지문 완벽하게 이해했다 기준이 뭐라 생각하심? 4
제목이 곧 내용
-
도표는 걱정하지마십쇼 넵
-
다이어트 시작함 5
살빼면 예전의 얼굴을 되찾을수있을까 나름 아동복모델도 했었는데..
-
남들은 안읽씹 잘하던데 난 성격 상 진짜 못하겠음 내가 지는거같네.. ㅠㅡㅠ
-
우왓
-
가끔씩 먹어야지
-
잘자요 6
굿 나잇
-
ㅇㅇ
-
"화작" "기하" "미응시" "일자찍기" "경제" "화2" 하고 수능샤프 받아와야지
-
뭐지 원래 안 이랬는데
-
야심한 밤에 ㅇㅈ 12
그것은 나카노 니노였구요~~
-
다시 붙여서 인식하나요
-
취중질닥ㄱㄱ 선넘질받도괜찮아 사랑하
-
같은 과라는 가정하에 ㅇㅇ
-
엑셀로 표본분석해서 앞에 추합 제외하고 이런식으로 해서 4칸 붙는 분들 많나요?사실...
-
내신 bb 기준
-
유빈아카이브 한번도안씀
-
사탐 과목 추천 1
과외생 중에 내년 수능 사탐런 한다는 학생이 있는데 어떤 과목을 추천하시나요? 이...
-
3개월 공부 국어 수학 사탐(경제,정법) 이렇게 3과목만 3개월 팠고, 2년 만에...
-
고고!
-
ㅠㅠㅠ 속상하네요
-
둘 다 합격하면 어디 가세요?
-
드뎌 왔다!!
-
ㅇㅈ?
-
멀수록좋음
-
수과탐 만점급인데 국어 3 4 받는사람(이런애가 있나 근데)
-
안녕하세요 저는 현재 **교육적 게임 활용에 대한 예비 초등 교사의 인식과...
-
확통도 문제 많이 풀어봐야하나 교사경 해야겠네
-
확통27,28,29,30 다맞기 저 올수65인데 뭐가 더 가능성있을까요. . . ㅠ
ㅁㅊ
음의 반응이라...
어떻게보면 화2를 끌어온건가
그런 느낌도 있고 화1을 뇌절의뇌절을쳐서 수리적으로 해석한 느낌
사실 이렇게 보는게 맞는듯
흠 좀더 찾아보고 올게요
아니 화1 머치동 강사들도 이런 스킬은 안 쓸듯...ㄷㄷ
wow..
저거 알려주신분 수학 고정100일듯;;
와 이건 진짜 신기하네 ㅋㅋ
생각지도못했다 ㅋㅋ
정신적으로 충격 받음 저게 뭐꼬
이. 이게 머노
누구는 1문제 푸는데 30분 걸리는데...
wow
밑에 예제 둘 다 깡계산으로 풀었는데 이게 능지차인가
당연히 저도 처음볼땐 깡계산..
화1에서 기울기도 땡큐한 건데 유리함수라... 대단하네요
뭔소린지는 모르겠지만 개추
한줄요약 : 그냥 생지해라.
안써도됨....
죄송합니다.. 생지러에게는 너무 어려워요..
물1 사세요...다항함수밖에 안 나오는 물1 사세요....
어림도없지 전기력 실계산문제!!
여러분 쉬운 물2하세요
이해는 못했지만 신기하니 좋아요 박고 갑니다
요즘에는 화학 문제 풀 때 '유리함수' + '점근선'까지 끌어와야 하는건가요?
어후... 타임어택이 예전보다 훨씬 심하겠네요.
아뇨 심심해서 쓴 글이고 이렇게까지 할 필요는 전혀 없어요
사실이런 풀이를 만들만큼 어렵게내는 과탐이 이상한거
오빠 제목이 너무 깐지나요
기출은 씹으면 씹을수록 새로운 맛이 나네요..