[이동훈t] 9모 가형 20번 근사적 풀이
게시글 주소: https://orbi.kr/00032279793
안녕하세요.
이동훈 기출
수능 수학독본의
이동훈 입니다.
9모 가형 20번의
그래프의 개형을 이용한
근사적인 풀이에
대한 문의들이 있어서
해설지 작업이
아직 다 끝나지 않았지만
일단 올려봅니다.
y축에 대한
정적분/구분구적법이
아니냐 ...
라고 말하면 할 말 없긴 한데.
이과생이라면
이 정도는
납득 가능한 수준이라고
생각합니다.
그리고 합성함수의 그래프의 개형을
잘 ~
그리면
위와 같은 엄밀한 계산까지
할 필요도 없겠지요.
이번 주안에 해설지 업로드 하겠습니다.
감사합니다 ~~ :)
ㄱㄹ
2ㅁ
.
.
.
가형 20번의 분석이 마음에 들었다면 ~
2021 이동훈 기출문제집 오르비 atom 책 페이지 (아래)
2021 수능 수학독본 수학2 (전자책)
https://docs.orbi.kr/docs/7636
2021 수능 수학독본 미적분 (전자책)
https://docs.orbi.kr/docs/7637
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[속보] 서강대 서귀포캠 건설, 한의예 7000여명 모집 1
연세대, 고려대, 성균관대, 한양대, 중앙대, 경희대, 한국외대, 건국대, 동국대,...
-
이따 봅시다 2
-
여러 의미로...
-
도시철도는 우측통행
-
정직한 제목
-
종강해주세요 5
지금당장
-
합이 2분의 파이임을 증명하시요
-
컴공 지망입니다
-
리나카루세프 3
베마카스바라 붕알갈인틸 씨씨게주납 엔피에이에스에스비비아이 오쓰쎄테포...
-
우웅 알겟어
-
고백아닌고백박음 4
ㅈㄴ떨린다 미칀
-
정병호t 원솔+기출->빅포텐하려는데 프로메테우스 수강하지않고 바로 시작해도...
-
ㅈ반고 쌤 근황 10
젊고(20대 중후?) 학생들이랑 소통 많이 하시는 여자쌤인데 ㅈ반고 과탐 가오충들이...
-
아니진짜잇올 1
두교시 남았지만 띄쳐 나가고싶다
-
7분후에 또 나가야되잖아요
-
전문직 준비하는거면 괜찮은데 괜찮은 중견정도 회사 가고싶은거면 연고대 문과 나와도...
-
우선 저는 고2 3월 모고 4등급이고 국어 공부를 한 번도 해본 적 없습니다…...
-
하긴 전세계가 지피티한테 지브리 해줘 이러는데 과부화가 안 될리가
-
허리아파 ㅠㅠ 0
나이먹어서 그런듯 난 아직 아가인데
-
암머닏 스페이스 암머닏 스페이스 암머 암머닏 스페이스
-
아 0
잉
-
(모두에게 덕코 2000) 캡처 후 댓글 -> 덕코 증정 30
https://atom.ac/books/13231-InDePTh+영어+독해+개념서+2...
-
그만할 때 됐잖아
-
학급 분리수거 담당임
-
중간 9등급박고 자퇴하면 성적에 남나요?
-
으하하 재밋다 2
으하하 수능 수능,, 수능 너무 재밌어 헤헤, 헤 수능 흐흐흐흐흐흐흐흐
-
재수 ㄴㄴ 갓 재수한 애들은 당연히 학교 다니는 것보다 재수 학원이 더 낫겟지 삼수...
-
이 눈팅러들 다 새로고침만 하고 구경만하고있어
-
당대표 윤석열 (옥중) 당대표 직무대행 김건희 사무총장 전한길
-
n제질문 1
하루에 어느정도 푸는게 적당한가요?? 지금 문해전s1으로 15-20문제정도 푸는데...
-
재밋어요
-
하루에 3일치를 나가버렸네요ㅐ
-
강기원 시즌2 2
이번주부터임 다음주부터임? 토요일수업기준
-
야 이 바보들아 4
나님이 팔로우를 받아준다는데 멀뚱멀뚱 뭐해
-
수학은 그래도 1
전범위 다 재밋게 할만한거 같은데탐구는 왜케 대놓고 재미없는 부분들이 잇는것임..
-
내 친구중에 학력구라치고 과외하는애 있음 주변친구들도 구라인거 다 앎
-
애미터진 전문대 1 2번 병신들 ㅋㅋㅋ 노가다나 뛰러 가라
-
안녕하세요? 6
안녕을 하세요. 안녕 하세요? 안녕?
-
맞팔 ㄱㄱ 1
잡담 태그 맨날 닮
-
시발 ㅋㅋ
-
저는 이원준T와 김승리T. 이원준T는 작년에 잠깐 들었지만 텍스트를 접하는데 있어...
-
과목은 경제긴 함
-
오르비 게시물을 점심저녁때 많이 올리면서 소통하는건 인정 근데 프로필은 볼것도...
-
*rend: 분열시키다 **embed: 깊이 새겨두다 이런식으로 주는 단어도 수능...
-
그게 나야 바 둠바 두비두밥~ ^^
-
오르비에 얼마나 사람이 몰릴까

오....커지는건가..
그렇지 않습니다. VIEW 의 차이입니다. :)그렇습니다 ! 위의 그림에서는 직사각형을 그리지 않았지만, 각 쪼개진 선분을 밑면으로 하는 직사각형을 여러개 그려서 구분구적법으로 정적분의 값을 생각해본다면, 넓이가 점점 커지는 것을 관찰할 수 있습니다. 그리고 위와 같이 수식을 이용한 풀이 역시 짧고 간단합니다. 따라서 이 문제는 그래프의 개형을 이용한 근사적인 풀이까지도 열어두었다고 봐야 하겠습니다. :)
안녕하세요 선생님. 만약 sin(pi+sqrt(p))=sinsqrt(p)가 맞는지만 클리어가 되면 너무 멋진 풀이가 될 것 같습니다.
제가 지금 12시간동안 수학만 보고 있어서 뇌가 굳었는지, 이 부분이 맞는지 잘 모르겠습니다.
만약 sin(pi+sqrt(p))=sinsqrt(p)가 아닌 sin(pi-sqrt(p))=sinsqrt(p) 가 맞다면, 아마 부등식이 반대로 나와 보여지지 않는 것 같습니다.
가르침을 주세요 ㅎㅎ 좋은 관점 하나 배워갑니다 ^_^
(물론, y축 적분을 불편해하는 불편러들이 있겠지만, 수학적으론 매우 타당하니까요)
밥먹다가 문득 생각났습니다. 아마 간단한 오타 수준이었던 것 같아요. (메이비 부호실수)
잘 고치셔서 올려주실거라 생각합니다 ㅎㅎ 그 풀이는, 맞는 풀이가 될 거구요.
내일 쯤 제 글 상단에 선생님의 풀이를 같이 첨부하여 '이렇게 하면 개형풀이도 옳다.'라고 보여주고 싶어요!
저도 선생님같이 정확한 해설만 있는 기출서를 한번 써보고 싶은데, 언제가 될지..ㅎㅎ 리스펙합니다~
제가 처음에 올린 수식에 오타가 있어서 정정하였습니다. :)
사실 위와 같은 발상, 풀이는 대부분의 수험생이 시험 시간 안에 할 수 있을 것 같지 않습니다. 대부분의 수험생분들은 그래프의 개형 그리고 ... 왠지 이렇게 하면 답일 것 같은데. 이 정도에서 답을 구할 것이구요.(시간이 남는다면 계산으로 확인을 하는게 현실적이겠지요.) 더더욱 5지선다 이기도 하고, 수열의 규칙성이 짝홀에서 뭔가 벗어날 것 같지 않기도 해서 ... 1번을 답으로 할 가능성이 높겠지요. 출제자 입장에서도 그 이상 뭔가 더 꼬거나 함정을 팔것 같지는 않구요. 물론 수능에서 이걸 노리고 출제할 가능성이 없는건 또 아닙니다. 그런 식으로 난이도 높이는 시험이니까요. 그래서 위의 문제는 어디까지나 계산을 이용한 풀이가 첫 번째 풀이일 것입니다. 위의 풀이는 위험 부담은 있지만 시간 확보를 위한 것이구요.
댓글 감사드립니다 ~~ :)
네, 저도 같은 입장입니다.
학생이라면 둘 다 어느정도 허용한다. 약간의 확률을 믿는거지만, 다수의 직관이라면 어차피 틀려도 같이 틀리고, 1컷은 똑같이 움직일테니 상대적 손해는 없을거구요.
하지만 가르치는 입장에선 직관과 더불어 정확한 해법도 제시해야하잖아요~
아마 이동훈 선생님도 위와 같은 증거(?)가 없었다면, 단순한 직관 정도로만 소개/제시하고 넘어갔을거라 감히 궁예질을 해봅니다 ㅎㅎ 감사합니다.
모든 강사분들의 고민인것 같습니다. 직관에 의한 풀이, 엄밀한 풀이, 그림에 의한 풀이, 수식에 의한 풀이, ... 수험생마다 원하는 것이 다 다르기 때문에 학파 같은 것이 생기기도 하구요. 수능 난문의 경우에는 직관적으로 답을 미리 결정하고, 이를 어느 깊이까지 증명할 것인지가 항상 고민이 됩니다. 선생, 학생 모두 그러할 것입니다. 감사합니다 ! :)
역시나 같은 고민을..ㅎㅎㅎ '직관이 우선이며 진리다.' 라고 믿고 있는 학생들이 꽤 높은 비율로 있는 것 같은데.. 그렇게 같은 패턴으로 무너졌던 직관력 좋았던 고3 학생 출신으로써 정말 비추하고 싶네요ㅎㅎ 직관은 최선이 아니고 차선임을 꼭 알아줬음 좋겠어요.
좋은 저녁 되세요~
시험에는 조금이라도 의심스러우면 논리적으로 증명하는 것이 답이겠지요.
좋은 밤 되시길 ~ :)
합성함수를 잘 그리는 건 구체적으로 어떻게 그리는 건가영
합성함수 역시 함수이지요. (합성)함수의 그래프의 개형을 그릴 때에는
곡선이 지나는 점 (특히 항상 지나는 점)
어떤 점에서의 접선의 기울기로 오목볼록의 판단
이 두 가지만 잘 고려해도 예쁘고 정확하게 그래프의 개형을 그릴 수 있습니다. 이 문제의 경우에도 함수 f(x)의 그래프의 개형을 그냥 쫙쫙 긋는 것보다는 ... 점과 기울기, 볼록성을 판단하면 깔끔하게 그려집니다. 감사합니다 ~~~ :)
혹시 2022버전 가형 교사경은 언제쯤 나올까요?
3학년 학평이 끝나는 직후 (11월)이 될 수도 있고, 2학년 학평이 끝나는 직후 (12월)일 될 수도 있습니다. 아직은 고민중입니다. 늦어도 12월 내에는 출시됩니다. :)
2021 가형 이동훈 교사경 문제집이랑 2022가형 이동훈 기출 문제집이랑 문항 선별,배치 및 해설 등의 부분에서 큰 차이가 있을까요?
(2022 교사경 대신 2021을 구매해서 풀어도 될까요?)
2022 에는 2021 에 비해서 추가문항이 적지 않을 것이므로 가능하면 2022 버전으로 푸는 것이 나을 것입니다.(2022 수능을 대비한다면 말이죠.) 해설은 큰 차이는 없을 것이고, 문항 선별은 좀 달라지고, 배치도 달라질 가능성이 있습니다. 다만 2021 버전을 풀고, 여기에 올해 교사경 기출을 시험지로 풀고 하면 괜찮긴 합니다. 감사합니다 ~~ :)