2월 22일(수) (문항 변형)
게시글 주소: https://image.orbi.kr/0002798846
*단원: 미분법, 미분법의 활용(이과 전용)
*예상정답률: 40%
*정답은 비밀글로 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
군인이랑 재수생이랑 연애하는거 괜찮을까요 쌩재수는 아니고 일학년 다니다가 휴학하는데...
-
생기는 것 같음
-
민족고대 청년사대 실천국교 저쩌구
-
재미 GOAT를 물으면 특정 과목 무서운 O스퍼거분들 몰려오는 모습이 그려져서.....
-
시발아
-
그림 3에서 1번째 세로수열이 등차나 등비가 안되는데 문제 오류인가요..?
-
얼버기!!!! 7
-
이 극장판3개가 다 개봉한다는거지....?
-
車서 흉기 찔린 50대 부부 미스터리…'음소거' 블박에 미궁 빠졌다 1
50대 부부가 흉기에 찔린 상태로 차 안에서 발견된 사건의 전말을 확인하기 위해...
-
약대 다니는데 의대로 이사 가능인가요
-
외국인이든 내국인이든 아저씨든 할아버지든 할머니든 나한테 뭐 엄청 물어봄 ex)...
-
오르비에 오늘 글 안올라오면 수술받다 죽은거임
-
방금찍음 4
눈많이옴
-
저는 남페미입니다..
-
왜안오는데
-
대구로 출발 10
눈과함께
-
어제 못본 이번분기 애니 보러간적있지아늠? 저는 수업중에 갑자기 생각나서 손들고 나감
-
수도권 사람들 개부럽네 눈도 다 보구말이야
-
할거없어서 심심
-
예쁨
-
현역이야 뭐 어쩔 수 없지만,,, 용산에서 현행대로 밀면 의머 뽑는 인원이 팍...
-
안녕하세요 오르비 수학강사 이대은입니다. 2025학년도 수능이 끝나고 첫 글인 것...
-
미적할게요?진짜?안말려요?야발점수강신청합니다?????말리지마세요아니말려주세요 ㅅㅂ..
-
언제그쳐 미친거같음뇨
-
분명 아까 아파트 지붕에 눈이 좀 쌓여있었던 거 같은데 2
정신차려보니까 어느새 다 녹아있음... 이런 저주받은 동네를 봤나
-
눈사람이 마치 찢으실거같이 생겼는데
-
현역 대학라인 1
현실적으로 어디라인까지 찔러볼 수 있을까요?
-
패딩 1
다들 뭐입으세여? 롱패딩 말고 진짜 개개개개개ㅐ개개개ㅐㅐ 따뜻한 패딩 추천해주세요
-
이 정도 성적이면 경희대설캠 인문+국캠 어문 가능한거맞나요? 경희대 반영비가 국어...
-
대설경보는 뭐야 9
XXX
-
소신발언 0
사문1컷 45 안되거나 되더라도 9평마냥 2나 다름없는 1일 가능성이 높아보임요...
-
장이 활발해진 것 같음 삶의 만족도 증가
-
1. 올해 수능을 잘봤거나 2. 이미 수시로 붙었거나 3. 메디컬 학생이거나 4....
-
군대 체질인가 14
말년 되니까 너무 슬픔.. 전문하사를 했어야했나 후임들은 쥐어박고 싶었지만...
-
이거 가능한건가요?.........
-
전학교에서이맘때 4
노트북으로 진학사켜놓고 패드로 소드아트온라인 정주행했음
-
누구랑 결혼할래 후자는 연예인급존예 성격은 다착함
-
솔직히 고백함 3
대놓고 본건 아니고 밥 굶고 혼자 애니 봄,,,,,,,,,,
-
애니안보는 전 일반인이라 대화에 못끼겠네요 ㅠㅅㅠ
-
이유도 적어주세요~
-
아니면서 말을 진짜 입에서 나오는대로 막 하시네 여자는 애 낳으면 대부분 경력...
-
탸캬캬
-
학교는 물론이고 작년에 학원에서도 자리에앉아서 애니봤는데 이거 대호감아닌가?
-
디지겠더 ㅅㅂ
-
눈꽃 세상이다 2
이뿌당
-
정병훈T n제 2
정병훈T 계약종료라길래 강의 내려가기 전에 교재 구입 좀 해보려는데 n제 중에서...
-
아직 붙은건 아니지만 어디가 좋울까요 일단 전 서울사는데 대기업보다는 공기업을 좀...
-
똥싸는중
엌ㅋㅋㅋ 오늘문제는 어려워서 그런가 댓글이 업네요 ㅋㅋ 풀어볼게요 ㅋㅋ 근데 얼핏보기에 x>0이기때문에 f(x)를 x>0인 구간에서 정의해 줘야되지 않나여?
흠... 그럴 것 같네요ㅎㅎ
f(x)가 x>0인 구간에서만 정의되긴 하지만, 그냥 함수가 사용되었다는 것 자체가 정의역에서만 성립됨을 전제했는데
그냥 표기해주는게 더 나을 것 같네요ㅎㅎ
오늘문제는 망...ㅜ 꼭 좀 풀어주세요ㅜ
5번맞나요 ?
질문잇는데요
f(x)를 적분하면 ln l f(x)l = 어쩌구 저쩌구 나오자나요
근데 (나) 의 조건으로 절댓값이 풀어지는건가요?
네ㅎㅎ 일단 절댓값은 풀지 않은 채로 두는데요, 절댓값 내부의 부호와 관계없이 x=1에서 극값을 갖습니다
그게 극댓값인지 극솟값인지는 부호를 결정해야 알 수 있는데, (나)조건에서 f(x)가 최솟값을 갖는다고 하였으므로 부호가 결정됩니다
부호가 반대인 경우는 최솟값이 존재하지 않고, 대신에 최댓값만 존재하죠...
그리고 답은 맞히셨어요ㅎㅎ
5번요 ㅋㅋ f(x) = -e^( -1/2(lnx)^2 +1) 이 나오네요 흠 그런데 x>0에서 정의된 함수 f(x)라고 해줘야 될거같아요 그리고 음... 뭔가 생뚱맞다면 ㄱ은 f(x)를 구해야만 풀수있는데 ㄴ,ㄷ은 그냥 좀 허무하게 풀린느낌?
네 정답입니다ㅎㅎ ㄴ,ㄷ에서 이계도함수를 직접 구하지 않고도 해결하는것을 의도했는데, 그냥 이계도함수를 구해버리면 끝이라 좀 아쉽긴 합니다...
5번요
정답!
문항의 의도를 선명히 하면서, 난도를 낮추기 위하여 구성을 조금 바꾸어보았습니다
풀이를 포기하셨거나, 또는 이미 푸셨던 분들 중 관심있으신분들은 재도전... 해주세요ㅜ
4번
정답ㅋㅋ
님 포만한 안하세요>?
아 저 네이버 아디가 없어서 가입을 못하고 있어요ㅜ 폰도 없어서 네이버 가입도 안되고...;;
3번!!!
제발.... 오래 걸려서 푼건데 맞기를. .
아닙니다ㅜ
2가지 의문점을 답과 함께 드립니다. ㅠ.ㅠ
1. lnxf(x)라고 할 때 이걸 ln {xf(x)}로 오해할 소지가 있기 때문에 f(x)lnx로 표시해야하지 않을까요?
아니면 오해한 제가 아직 수리적 소양이 부족한 건가요.. ㅠ_ㅠ
2. 저로서는 ㄴ보기가 참인지 거짓인지 알 수 없다고 생각했습니다. 제 생각이 틀린 것인가요?
아니면 참인지 거짓인지 알 수 없기 때문에 답에서 제외하는 게 옳은건가요?
제가 구한 답은 4번 ㄱ, ㄷ입니다.. 정답 여부에 관계없이 풀이 달아주시면 감사하겠습니다.
1. 네 타당한 지적이네요ㅎㅎ 그렇게 수정하도록 하겠습니다
2. ㄴ은 f(x)lnx+xf '(x)=0의 양 변을 미분한 후, e를 대입합니다...(1)
또, f(x)lnx+xf '(x)=0에 e를 대입합니다...(2)
이제 (2)를 (1)과 연립하면 아실 수 있을겁니다ㅎㅎ
그리고 정답은 4번이 맞습니다ㅎㅎ ㄱ을 이용하여 f ''(1)>0이고 ㄴ에서 f''(e)<0이므로 중간값 정리에 의해 (1,e)에서 변곡점이 되도록
하는 x좌표가 존재합니다
음.. 2번이 잘 이해가 되지 않아서 그러는데요 ㅠ;
(1)식은 f(e)/e+f '(e)+f '(e)+ef ''(e)=0이 되고
(2)식은 f(e)+ef '(e)=0이 됩니다. (2)번식의 양변을 e로 나눈 뒤 (1)과 연립하면
f '(e)+ef ''(e)=0이 되는데.. 음.. 여기서.. 어떻게 ㄴ보기가 맞다는 걸 알 수 있죠? ㅠ.ㅠ
또 이해가 안되는 부분은 ㄱ에서부터 f ''(1)>0을 도출해내는 부분인데요,
전 단지 ㄱ에서 이끌어 낼 수 있는 것은 f(1)f ''(1)<0이라는 사실밖에 없다고 생각했거든요;
마찬가지로 (1)식과 (2)식을 연립한 식에서도 이끌어낼 수 있는건
f(e)f '(e)<0, f '(e)f ''(e)<0밖에 없다고 생각했습니당 ㅠㅠ 좀 더 자세한 해설 부탁드려요 ..
함수 f(x)의 절댓값은 e^( -1/2(lnx)^2 +C) 가 나오는데,
f(x)가 e^( -1/2(lnx)^2 +C)인지, 아니면 -e^( -1/2(lnx)^2 +C)인지의 여부는
문제에 '극솟값이 존재한다'라는 조건에 의하여 결정할 수 있습니다
e^( -1/2(lnx)^2 +C)와 -e^( -1/2(lnx)^2 +C)를 각각 미분해보면 공통적으로 x=1에서 극값을 갖는데,
e^( -1/2(lnx)^2 +C)는 그 중에서도 극댓값에 해당하고 극솟값은 존재하지 않습니다
항상 0보다 큰 값을 갖는데, x=1에서 점점 멀어질수록 0에 가까워질 뿐이죠...
반대로 -e^( -1/2(lnx)^2 +C)는 x=1에서 극솟값을 갖고 극댓값은 존재하지 않습니다
항상 0보다 작은 값을 갖으면서 x=1에서 점점 멀어질수록 0에 가까워질 뿐이기 때문이죠...
이제 f(x)= -e^( -1/2(lnx)^2 +C)의 형태라는것을 토대로, f '(1)=0, f(1)<0임을 알아낼 수 있습니다
따라서 ㄱ의 f(1)+f ''(1)=0을 이용하면 f ''(1)>0이 됩니다
ㄴ은 f '(e)+ef ''(e)=0까지 하셨으면 다 된거에요... f ''(e)=-f '(e)/e인데, f '(e)>0이므로 f ' '(e)<0입니다
(f '(e)>0이라는 사실은 f(x)가 x=1에서 극솟값을 가지고, 1보다 큰 구간에서는 증가하므로 알 수 있죠)
따라서 ㄷ은 함수 f ''(x)의 중간값 정리를 이용하면 맞다는 사실도 알 수 있구요...
답은 1번이가요 ㅠㅠ ㄷ정확히 어케풀죠>? 어렵네요 ....
함수 f(x)의 절댓값은 e^( -1/2(lnx)^2 +C) 가 나오는데,
f(x)가 e^( -1/2(lnx)^2 +C)인지, 아니면 -e^( -1/2(lnx)^2 +C)인지의 여부는
문제에 '극솟값이 존재한다'라는 조건에 의하여 결정할 수 있습니다
e^( -1/2(lnx)^2 +C)와 -e^( -1/2(lnx)^2 +C)를 각각 미분해보면 공통적으로 x=1에서 극값을 갖는데,
e^( -1/2(lnx)^2 +C)는 그 중에서도 극댓값에 해당하고 극솟값은 존재하지 않습니다
항상 0보다 큰 값을 갖는데, x=1에서 점점 멀어질수록 0에 가까워질 뿐이죠...
반대로 -e^( -1/2(lnx)^2 +C)는 x=1에서 극솟값을 갖고 극댓값은 존재하지 않습니다
항상 0보다 작은 값을 갖으면서 x=1에서 점점 멀어질수록 0에 가까워질 뿐이기 때문이죠...
이제 f(x)= -e^( -1/2(lnx)^2 +C)의 형태라는것을 토대로, f '(1)=0, f(1)<0임을 알아낼 수 있습니다
ㄱ을 해결하기 위해 문제의 조건에 주어진 식 f(x)lnx+xf '(x)=0의 양 변을 미분하여 x=1을 대입하면
f(1)+f '(1)+f ''(1)=0이 나올겁니다 여기서 f '(1)=0이므로 f(1)+f ''(1)=0입니다
ㄴ은 f(x)lnx+xf '(x)=0의 양 변을 미분한 후, e를 대입합니다...(1)
또, f(x)lnx+xf '(x)=0에 e를 대입합니다...(2)
1)식은 f(e)/e+f '(e)+f '(e)+ef ''(e)=0이 되고
(2)식은 f(e)+ef '(e)=0이 됩니다.
(2)번식의 양변을 e로 나눈 뒤 (1)과 연립하면 f '(e)+ef ''(e)=0이 되면서
f ''(e)=-f '(e)/e인데, f '(e)>0이므로 f ' '(e)<0입니다
(f '(e)>0이라는 사실은 f(x)가 x=1에서 극솟값을 가지고, 1보다 큰 구간에서는 증가하므로 알 수 있죠)
ㄷ은 함수 f ''(x)의 중간값 정리를 이용하면 되는데요
ㄱ의 f(1)+f ''(1)=0을 이용하면 f ''(1)>0이 됩니다
또 ㄴ에서 f ''(e)<0임을 알았으므로 ㄷ은 바로 아실 수 있을겁니다
에프엑스를 직접구할수 있었군요.... 다 쓰느라 수고하셨어요 감사합니다^^
으ㅏ..
ㄴㄷ는 f''(1)이랑 f''(e) 부호로 중간값의 정리 쓰는거 맞죠?
근데 정작 부호 판별을 못하겠어요.. 어떻게하죠? ㅠㅠ
함수 f(x)의 절댓값은 e^( -1/2(lnx)^2 +C) 가 나오는데,
f(x)가 e^( -1/2(lnx)^2 +C)인지, 아니면 -e^( -1/2(lnx)^2 +C)인지의 여부는
문제에 '극솟값이 존재한다'라는 조건에 의하여 결정할 수 있습니다
e^( -1/2(lnx)^2 +C)와 -e^( -1/2(lnx)^2 +C)를 각각 미분해보면 공통적으로 x=1에서 극값을 갖는데,
e^( -1/2(lnx)^2 +C)는 그 중에서도 극댓값에 해당하고 극솟값은 존재하지 않습니다
항상 0보다 큰 값을 갖는데, x=1에서 점점 멀어질수록 0에 가까워질 뿐이죠...
반대로 -e^( -1/2(lnx)^2 +C)는 x=1에서 극솟값을 갖고 극댓값은 존재하지 않습니다
항상 0보다 작은 값을 갖으면서 x=1에서 점점 멀어질수록 0에 가까워질 뿐이기 때문이죠...
이제 f(x)= -e^( -1/2(lnx)^2 +C)의 형태라는것을 토대로, f '(1)=0, f(1)<0임을 알아낼 수 있습니다
ㄱ을 해결하기 위해 문제의 조건에 주어진 식 f(x)lnx+xf '(x)=0의 양 변을 미분하여 x=1을 대입하면
f(1)+f '(1)+f ''(1)=0이 나올겁니다 여기서 f '(1)=0이므로 f(1)+f ''(1)=0입니다
ㄴ은 f(x)lnx+xf '(x)=0의 양 변을 미분한 후, e를 대입합니다...(1)
또, f(x)lnx+xf '(x)=0에 e를 대입합니다...(2)
1)식은 f(e)/e+f '(e)+f '(e)+ef ''(e)=0이 되고
(2)식은 f(e)+ef '(e)=0이 됩니다.
(2)번식의 양변을 e로 나눈 뒤 (1)과 연립하면 f '(e)+ef ''(e)=0이 되면서
f ''(e)=-f '(e)/e인데, f '(e)>0이므로 f ' '(e)<0입니다
(f '(e)>0이라는 사실은 f(x)가 x=1에서 극솟값을 가지고, 1보다 큰 구간에서는 증가하므로 알 수 있죠)
ㄷ은 함수 f ''(x)의 중간값 정리를 이용하면 되는데요
ㄱ의 f(1)+f ''(1)=0을 이용하면 f ''(1)>0이 됩니다
또 ㄴ에서 f ''(e)<0임을 알았으므로 ㄷ은 바로 아실 수 있을겁니다
4번인가요??.. x<1 x=1 x>1 로나눠서 극솟값가진다해서 f(x)는 무조건음수 f'(x)는 x<1에선 음수 x=1에서 0 x>1에선 양수 이렇게두고풀고 개형대충그렸는데.... 정확학 출제자의의도와 풀이좀 가르쳐주십시오..... 늦게 보게되 죄송합니다..ㅠ
답 ㄱ?
f(x)를 구해버렷는데 구한게 맞나. .
4번?/ 풀이과정이 궁금하네요./
f(x)는 이계미분가능하다는 조건과 함수f(x)는 오로지 극솟값 1개만 존재한다는 조건이 있어야되는것 아닌가요? ㅋ 답 4번인가요??