산수칼럼)내가 구해야 하는 답이 무엇잉교?-문제 속에 답이 있다---6평-1
안녕하세여 오르비여러분~
수능이 끝나고 벌써 일주일이 넘었네요.....
좀 많이 뒷북인 감이 없자나 있지만 보닌이 심심한 관계로 수학에 관해 글을 좀 끄적여보려합니다.
일단 필자 소개를 좀 하자면 작년 수능이 지진으로 미뤄지고 나서 심심해 눈팅하다 세계사 자작문제로 데뷔한 중2병 오덕아싸입니다 ㅎㅎ
여러분들은 들어오시기 이전에 제목을 보시고 스스로 "뭐 저런 진부한 소리를 지껄이는 Q.T가 다있누"하고 들어오셨을지도 모르겠으나 확실한건, 최상위의 그들은 바로 이러한 코드 내에서 문제를 풀어나간다는 것입니다.
자기 자랑을 하려는건 아닙니다. 다만 이 글을 읽으신 후 자신이 그동안 어떤 방식으로 문제를 대했는지에 대한 간단한 반성 및 고찰의 시간이 이루어졌으면 하는 바람입니다~
참고로 자세한 풀이는 하지 않을것입니다. 어디까지나 이 글의 목적은 수학 문제를 대할 때의 태도와 그 논리흐름에 관련된 것이니까요. 그래봤자 저는 문돌이입니다 흐규
-------------------------------------------------------------------------------------------------------------------------------
1)29번
일단 문제를 좀 봅시다.
대충 문제를 훑으셨으리라 생각합니다.
이 문제는 우리 문돌이들을 6평때 충격에 빠뜨렸던 문제로 유명하죠... 지금부터 그 이유를 알아보도록 하겠습니다.
우선 우리가 구해야 하는 정답을 알기 위해선 a,b,c의 정확한 값을 알아야 한다는 것을 알 수 있습니다.
즉 함수 식을 구해야 한다는 뜻이죠.
그럼 이제 우리가 알 수 있는 것들(조건)을 좀 봅시다.
1)함수 F(x)는 x=1을 기준으로 2개의 함수꼴로 나타나는군요
2)음.. 연속이네요
3)오.. 역함수도 가집니다.
4)주어진 함수와 역함수가 3점에서만 만납니다.
5)게다가 그 점의 x좌표까지 알려줬네요...(-1, 1, 2)
그럼 찾은 조건을 가지고 우린 생각을 해야합니다.
우리의 최종목표는 함수f의 정체를 밝히는것이죠.
그렇다면 과연, 내가 찾은 조건은 주어진 함수를 완성시키기에 충분한가?
1.조건 1)과 2)를 가지고 식 하나를 뽑아낼 수 있습니다. 우리는 연속이 뭔지 알기 때문입니다.
2.조건 3)만 보고서 우리는 두 그래프의 개형이 떠올라야합니다. 죽을때까지 1번:증가만 하거나//2번:감소만 하거나
3.조건 4)를 보고 확신할 수 있어야합니다. 아하! 이 그래프는 감소만 하는구나!
cf1)증가 그래프라면 무조건 함수와 그 역함수의 교점은 y=x선상에서만 만납니다. 따라서 1.과 2.에서 추론한 것과 같이 그래프를 그려나가면 다음과 같은 케이스에 봉착합니다.
3-1.에... 한점에서밖에 안만나는데?
3-2.에... ㅈㄴ 많은데?
3-3.에... 두점에서밖에 안만나는데?
대다수의 수험생은 여기서 멘붕이 옵니다. ㅅㅂ 문제 잘못냈네 ㅋㅋ 이거 이의제기해야징~!
cf2)그렇다면 감소함수 그래프는 언제 만나는데??
첫번째: y=x선상에서 만난다.(자명합니다 ㅎ)
두번째: y=x대칭인 점에서(...!)만난다.
애초에 역함수 자체가 y=x대칭인 함수이죠.... 이것만 알고 있었어도 y=x선상 위에서 만나는 점뿐만 아니라 바로 두번째 조건도 생각을 했을것입니다... 많은 분들이 이 점을 놓쳤죠
다시 돌아가서...
4. 그럼 이제 그래프 차원을 넘어서 식 차원의 추론까지도 가능합니다.
f의 그래프는 y=x와의 교점이 하나여야만 합니다. 또 y=x 그래프의 대칭인 점이 한 쌍, 즉 두 점이여야 하죠. 이런 식으로 도합 세점에서 f와 f의 역함수가 만난다는 걸 알 수 있죠.
사실 그 뒤의 과정은 생략하도록 하겠습니다. 계산을 보여드릴려고 이 글을 쓴것이 아니기때문이죠.
제가 6평 29번 문제를 들고와서 여러분에게 보여드린 목적은 다음과 같습니다.
첫번째. 내가 무얼 구해야하나
문제풀이에 있어서 목적의식을 가져야 한다는 것입니다.
두번째. 내가 알고 있는게 무엇인가.
아는 걸(조건) 가지고 문제를 풀어야합니다. 모르는 거 백날 찾아봤자 그 문제 푸는데 쓸데없습니다.
세번째. 아는 걸 가지고 어떤 과정으로 수립된 목표를 달성할 것인가
세번째의 핵심은 누가 뭐래도 대충 끄적거리지 말자(=쓸데없는 삽질하지 말자)입니다. 무의미한 삽질을 줄이는 것이야말로 수학문제 푸는데 있어서의 미적 아름다움이니까요 ㅎ
-------------------------------------------------------------------------------------------------------------------------------
사실 첫 수학 칼럼이라 제가 전달해드리고 싶은 점이 잘 전달되었는지 모르겠네요...
제가 전달해드리고 싶은 골자는 저어기 위에 마지막 3개가 대부분 공통 코드로서 수능 문제풀이가 작용된다는 것을 보여드리고 싶은데... 일단 69평은 킬러 3문제(21 29 30)만 하고 넘어갈 예정이긴 합니다만 아무래도 이번 수능 나형은 비킬러도 난이도가 올라왔다는 평이 여론이어서 18번부터 좀 건드려볼까,,,싶기도 한데... 이런속도로는 무리이지 않을까...랄까?
여튼 저도 심심해서 쓴것이니만큼 모쪼록 재미로 읽어주시면 좋겠네요 ㅎㅎ
6평 21번하고 30번은 오늘 올라가긴 힘들거 같고 내일즈음에 올라갈것같습니다 ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3단원 우주 쪽에서 수학과 연관하여서 발표할만한게 몇가지 눈에 띄는데 특별히...
-
메가 기준 백분위로 언매 87 수학 98 영어 1 화학 98 지구 100 고려대 공대 가능할까요
-
아루지도넛(연의26학번)님 진심으로 5수를 응원합니다! 12
비록 입결이 인설약 > 지방치라는 드립을 쳐도...! 비록 현직국어강사한테 9평...
-
언매 88 화작 90 미적 84 기하 88 확통 90 영어 5% 물리 45 화학...
-
눈치보임..
-
1,2월은 수학에 매진하고 3월부터 다른 과목 들어가는거 ㄱㅊ나요?
-
길 안내함? ㅈㄴ 궁금하네
-
근데 좆같은 인도 릴스 뜨는 건 어떻게 하고 싶고 에휴
-
아진짜수시할걸 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 에휴
-
맞팔구함 3
구함
-
애니 추천 19
연애물 추천해 주실 수 있나요..?
-
재수생 성적표 4
기숙에서 시험친다고 주소지 바꿨었는데 모교에서 성적표 발급받을 수 있나요?
-
동성 성폭행은 4
원인이 뭘까요 저 가해자들이 다 게이일리는 없잖음 심지어 초등학생 상대로...
-
ㅈㄱㄴ
-
신기하네...
-
기말대비겸 논술대비겸 으흐흐
-
2025,2026 해서 공통 380문제 캬 2026 지인선 n제는 봇치 표지로 제본 못해서 아쉽네
-
안녕하세요 지구과학1 쌩 노베입니다. 겨울방학동안 지구과학 기출 + 개념 끝낼...
-
맨다리는 여고생의 특권이니까
-
빡세구만 4
항상 해석이 이리 다양하다니.. 단순히 글을 잘 읽는 것뿐 아니라 전달하고자 하는...
-
ㅠㅠㅠㅜㅜ
-
관리하시는분이 안씻고 다니는지 냄시가..
-
나쁜넘들
-
동덕여대 근황 52
이젠 단톡에서 ‘자살’ 얘기까지 나오네 실화냐 근데 여기 FM구호는 왜...
-
오랜만에 오르비 오니 다들 아이민이 어마어마하네요 ㄷㄷ 제가 가입할때는 오르비가...
-
데이터 가지고 분석하고 말하는거 아니면 싸닥쳐주세요. 라고 말하면 안되겠죠? 그치만...
-
거울보기 0
-
30 찍맞? 0
좋겠다
-
진학사 83으로 잡던데 그것보단 높겠죠?? 진짜 83이면 완전 나락인데ㅜㅜ
-
의대정원 0
충북대 49->200
-
왜 고속 등 컷이 작년이랑 똑같운거 같냐
-
20%는 됨? ㅋㅋㅋㅋ 이걸 해내는 현역들은 대체 뭘까
-
지인선 선생님 4
존함의 한자가 어떻게 되시나요
-
출처는 올해 기술고시
-
운동하자
-
정시원서 끝나면 로스쿨cpa 등등 모든 전문직 칼럼쓸게요 0
여기 너무 모르는거 같음. 실제 다니고 있는 지인들 동원할듯
-
대학전쟁2 보는데 마음이 웅장하네 대 서 울 대 갓귬…
-
기출 빠삭하면 그냥 ebs연계되는 이감같은 실모만 벅벅 풀어도 상관없을거같은데 어케 생각하나요?
-
난 특정라인 성적대부터는 농협대 갈 생각 있다. 투표 ㄱㄱ
-
생1 vs 지1 1
현역이 등급따기 쉬운건 둘 중 그나마 뭔가요?
-
전적대99뜨면기분은좋음 12
기분은좋구나
-
부모님은 재종이든 기숙이든 다 지원해 준다고 하심 근데 너므 미안해서 알바해서...
-
하사월급 400만원 드립보다 참신하네 ㅋㅋㅋㅋㅋ
-
대학 갔으면 오르비 하지 마라 > 반만 맞음. 개인적으로 입시 끝냈으면 입시 커뮤를...
-
로스쿨 핫하네… 6
잘모르겠고 시험공부개짜증나서 로준시오패스 될 것 같음 로시오패스도 아니고...
-
의대 빵도 나오기도 함?
-
자전같이 100명씩 뽑는학과는 대체로 입결따라 가는편이죠?
-
수상 수하 없고 공통수학1,2만 있는데 시발점이랑 노베 수상 수하 이제 못 듣는 거임?
-
에휴
-
입결이 유지될지 궁금하다
좋은글추
흠~ 하지만 아무도 관심이 없는걸...
홍보합시닷
흠.....
ㄷㄷ 혹시 어떻게 공부하셨나요??
아 안녕하세여~ 전 기출분석이 수학공부에 있어서 가장 중요한 공부라고 생각합니다! 그래서 실제로 그렇게 해왔고.... 흠 혹시 더 자세한 설명 원하시면 쪽지로 해드릴수 있을까요?? 여기선 추상적인 말밖에 못해드릴거같아요