디앤티&마약 직전모의 정오반영+해설강의
2018 디앤티&마약 직전모의고사 (나) 정답지.pdf
2018 디앤티&마약 직전모의고사 (나).pdf
안녕하세요.
마약팀 김정문입니다.
나형 21번 발문 표현에 작은 오류가 있어 수정된 파일로 재업로드 합니다.
본 모의고사는 온/오프라인 총합 약 2만명 정도의 수험생 분들이 풀어주셨습니다 :)
많은 관심가져주셔서 감사드리며, 코앞으로 다가온 수능날까지 최선을 다하시길 응원하겠습니다.
나형 해설강의
가형 해설강의
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2번방에서 질문 하나 어어어어 하다가 다시 답변해도되겠습니까 하고 또 절다가 답변완성함 조졋다 ㅅㅂ
-
서글프뇨
-
4키로 8
ㄹㅇ 저질 체력 돼서 다리가 후들거림..
-
근데진짜공통 3
님들도 작년이 올해보다 어려웠음?
-
광명상가 가능할까요?? 어디까지 가능할까요..!
-
이잉 졸려 0
-
과는 어디 가든 상관없어요
-
"칸나" 뭐지 왜 얘도 탑이냐
-
“연대지지선언“ 우하하팡파레~
-
외대가 너무 멋져서 (훌리는아님) 올해 경희나 중앙 붙어도 외대 갈거같은데 주변에서...
-
진짜 시간 너무 부족하던데...
-
ㅈㄱㄴ.. 통합수학 확통 높2따리가 풀만한 거로 추천 부탁..
-
님들도 인생이 빡세다고 느껴지시나용?? 요즘 취업문이 완전 ㅈ창났다던데
-
하... 제발 컷 나게 나오게 해주세요
-
복습하는것들은 인강,수학 틀린문제,발상 이정도고 1.강의 직후 복습 2.당일 8시...
-
"해가 땅에 떨어진격" 지구멸망사주
-
시대인재 전형 0
가채점 결과 12135이렇고 영재고 10등 초반인데 우선선발은 안되고 성적순 선착순...
-
어떤 문제 풀땬 개빠르고 어떤문제 풀땬 갸느림
-
콱)헐 개못해 4
소름돋아
-
저는 1월 25일!
-
대성마이맥에 올라오셔서 검색해봤는데 대치동에서 날리셨던분이 신가봐요
-
2024 년 11 월 26 일 | 제 1219 호 2025 수능 D-352 여러분의...
-
할거 없는데
-
작아서 들고다니기도 좋음
-
지금 군대에 있어서 7월에 강대K 시작할때 파이널부터 들을까 하는데 언제쯤 대기...
-
날씨가 이게뭐니
-
정시로 넘어오려 각을 재네요 이게 바로 현여기의 패기인가 흠......
-
진짜 막판에 2에서 4로 고침…
-
마비카 레ㅛ츠고
-
할 만할까요? 설경이 목표입니다 대학 간판에 미련이 남는 한편 수험 생활을 오래...
-
토익 2트 ㅇㅈ 15
(인증글 올리는걸 깜빡해서 뒤늦게 올려봅니다..) 당시 몸이 많이 아팠던지라 시험에...
-
의외로 나 13
10대임
-
??? 가치없음???? 메디컬 말고 갈만한 과 엊ㅅ는거임??
-
왜 자꾸 21살로 계산하게 되지
-
옛날에는 진짜 여기서 좋은 정보 많이 얻고 국어 4->1로 올렸는데 수학 칼럼도...
-
그게 리얼 트루?????????
-
아 머리 아파 4
-
25수능 물1 45 생1 47 셤장에서 물생 둘다 1을 확신 결과는 물리...
-
늙어서 그런가 별 감흥이 없네 이제 실전에서만 느끼는 몸이 되었나 네 사실 졸려요
-
올해 9월이랑 수능 중에서 확통 기준 뭐가 더 체감 난이도가 쉬우셨나요? 제가...
-
경제 모의고사 1
경제 기출 문제집 추천 경제 모의고사는 어떻게 구하는지 알고 싶습니다. 특히 시대...
-
국어 문학 틀린거 (8점이긴함,, 근데 ㅅㅂ 24문학도 다맞았는데 하,,) 지구...
-
레전드 똥글이 보고싶어.
-
여기서 대체 무슨 생각으로 3을 찍었을까요 진짜 시력에 문제있나 날려읽느라 과학...
-
1년 반수 비용 180으로 의대 붙으면 돈 아껴줬다고 생색내도 된다 vs 안 된다 3
sky 공대 다니다가 반수 결심, 부모님 격한 동의 + 전폭적 지원 약속 후 1년...
-
이제서야 정신을 차린 나...
-
무물보 24
가형인데 첫번째해설강의들어야하나..
나형 해설강의는 꼭 들어야겠네요
나형 해설강의 해주시는분
미모 실화?
고우시다
사랑해요
가형러인데 나형 우선 풀게요
와.... 목동러셀에서 애들이 이야기를 많이해서
이름만 듣다가 처음 영상보네요.
강의 잘들었습니다^^
헐 나형 풀어야지
나형 잘 풀었습니다 형님. 해설강의두요
근데 형은 왜 안하셨어요? 보고싶은뎅 ㅋㅋㅋ
나형 해설강의 감사하옵나이다
와 나형... 대박 채영닮았다
수능끝나고 나형 해설강의 꼭 들어야겠다
ㅋㅋ해설강의 들을까 말까 고밈했는데 들어야겠다
(나) 형에도 확통이 있어서 정말 다행이야...
해설강의 꼭 들어야 하겠네요 ㅋㅋ
가형풀고 나형듣는다
지우지 말아주세요 수능끝나고 첫번째 해설 강의 들으러 올게요
가형 해설분 올티 닮으셨다
헐 ㄹㅇㅋㅋ
헐 나형쌤미모 인강시장에서 탑인듯
헐 쉣 나형분 하시는분 누구??? 저 나형으로 바꿔야겟는데;;; 공부 잘될듯
진짜 이쁘시다 나형..
나형듣는분들 집증 안되실듯...
미모에 취해서리~
윽 심쿵 ㅠㅠㅠ
가형분 살짝 올티 닮으심 ㅋㅋ
내가 왜 나형을 듣고 있지?
가형 의문의 1패
목동러셀 갓예지T.......
가형 해설강의 ㄹㅇ루 주요문항만 해설하시네..
이거 1컷 얼마정도인가요??
한가지 궁금한게 있습니다.
(가형20번) 나형 20번 ㄷ 발문을 수정해야하지 않을까요?
접하는 상황을 이용해 푸는 문제가 되려면
" f(x)+g(x) 의 최대값이 1이 되게 하는 x의 값이 3일때 "
이렇게 수정 해야 되지 않을까요?
왜냐하면 x=3에서 최대값 1이다 라고 하면 x=3에서 굳이 접하지 않더라도 교점만 생기면 되기때문에...
교점이 생기면 최댓값이 1이 안되지 않을까요?
papapa님의 의견이 맞습니다.
교점만 생긴다면 최댓값이 1이 아닌 경우가 얼마든지 생길 수 있습니다.
papapa님의 의견이 맞습니다.
교점만 생긴다면 최댓값이 1이 아닌 경우가 얼마든지 생길 수 있습니다.
+
x=3에서 접하지 않고 교점이 생기면 최댓값이 1이 넘어가는 경우가 생깁니다.
접하는 상황은 최댓값 1이라는 조건을 통해서 생각해야 하며,
접할 때의 x값이 3이라는 것을 통해 (x-3)^2 이라는 식을 이끌어내야 합니다.
무슨의미인지는 압니다.
그래도 말의 뉘앙스상 최대값이 1이 되게하는 X의 값이 3일때 라고 하는게 더 오해의 소지가 없다고 봅니다.
x가 3인 곳에서 반드시 접해야 한다는 상황으로 풀이를 유도 하기에는 주어진 발문이 명확하지 않다고 생각합니다.
네 발문은 하나의 의견으로 받아들이겠습니다.
발문의 애매함과는 별개로,
x=3에서 교점만 가진다면 항상 최댓값 1이 된다는 님의 지적은 틀렸습니다.
제가 쓴말을 잘못 이해 한듯요
더 자세히 적으면...
원래발문의
"x=3일때 최댓값 1 "
이 부분을 두가지로 해석할 수 있어요
1.
f+g의 최댓값이 1이고 그때의 x값은 3 이므로 두 그래프가 x=3에서 접한다.
2.
x의 값을 3으로 고정했을때 f+g의 최댓값이 1이다.
따라서 두 그래프가 x=3 에서 만난다.
이렇게 두가지 해석의 여지가 있을수 있으므로 저 부분의 발문을
" f+g의 최대값이 1이 되게 하는 x의 값이 3일때 "
로 수정한다면 2번 해석의 여지가 사라지게 되죠
이런 의미로 쓴다는게 뒷 부분을 자세히 적지 않았네요
;_;
1번으로 해석하든 2번으로 해석하든
똑같이 답을 낼 수 있죠.
2번으로 해석했을 때,
"x의 값을 3으로 고정했을때 f+g의 최댓값이 1이다.
따라서 두 그래프가 x=3 에서 만난다."
에서 그치는 것이 아니라
여기서 한단계 더 나아가야죠. -> (x-3)^2 의 형태가 되어야 한다.
x=3으로 고정했을때 f+g 최댓값이 1이 되는 순간이 바로 제곱의 형태가 되어야 하는걸 캐치해야죠;
x=3 접하지 않고, 만나기만 하는 함수 아무거나 설정해서 만들어 보시면 편해요.
만나기만 하는 함수를 설정하면 x=3에서 최댓값을 가지지 않을 것이니까요 ㅎㅎ
그게 아니라 두번째 해석은
x=3인 곳에서만 직선과 곡선을 위아래로 움직였을때 최대가 1 이라고 했으므로 만나는 상황까지만 되고 교차해서 직선이 곡선 위로 올라가지 않는다
이렇게 해석할 여지가 있다는 것이었네요